Chemical Analysis

Chemical Analysis
Автор книги: id книги: 2325169     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 7368,36 руб.     (80,08$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119701347 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The new edition of the popular introductory analytical chemistry textbook, providing students with a solid foundation in all the major instrumental analysis techniques currently in use    The third edition of  Chemical Analysis: Modern Instrumentation Methods and Techniques  provides an up-to-date overview of the common methods used for qualitative, quantitative, and structural chemical analysis. Assuming no background knowledge in the subject, this student-friendly textbook covers the fundamental principles and practical aspects of more than 20 separation and spectroscopic methods, as well as other important techniques such as elemental analysis, electrochemistry and isotopic labelling methods.  Avoiding technical complexity and theoretical depth, clear and accessible chapters explain the basic concepts of each method and its corresponding instrumental techniques—supported by explanatory diagrams, illustrations, and photographs of commercial instruments. The new edition includes revised coverage of recent developments in supercritical fluid chromatography, capillary electrophoresis, miniaturized sensors, automatic analyzers, digitization and computing power, and more. Offering a well-balanced introduction to a wide range of analytical and instrumentation techniques, this textbook:  Provides a detailed overview of analysis methods used in the chemical and agri-food industries, medical analysis laboratories, and environmental sciences Covers various separation methods including chromatography, electrophoresis and electrochromatography Describes UV and infrared spectroscopy, fluorimetry and chemiluminescence, x-ray fluorescence, nuclear magnetic resonance and other common spectrometric methods such atomic or flame emission, atomic absorption and mass spectrometry Includes concise overview chapters on the general aspects of chromatography, sample preparation strategies, and basic statistical parameters Features examples, end-of-chapter problems with solutions, and a companion website featuring PowerPoint slides for instructors  Chemical Analysis: Modern Instrumentation Methods and Techniques, Third Edition , is the perfect textbook for undergraduates taking introductory courses in instrumental analytical chemistry, students in chemistry, pharmacy, biochemistry, and environmental science programs looking for information on the techniques and instruments available, and industry technicians working with problems of chemical analysis.  Review of Second Edition :  “An essential introduction to a wide range of analytical and instrumentation techniques that have been developed and improved in recent years.”  – International Journal of Environmental and Analytical Chemistry

Оглавление

Francis Rouessac. Chemical Analysis

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Chemical ANALYSIS. Modern Instrumentation Methods and Techniques

Foreword

About the companion website

Introduction

Chapter 1 General Aspects of Chromatography. INTRODUCTION

Objectives

1.1 GENERAL CONCEPTS OF ANALYTICAL CHROMATOGRAPHY

1.2 THE CHROMATOGRAM

1.3 GAUSSIAN PEAKS AND REAL PEAKS

1.4 PLATE THEORY

1.5 NERNST PARTITION COEFFICIENT (K)

1.6 COLUMN EFFICIENCY. 1.6.1 Theoretical Efficiency (Number of Theoretical Plates)

1.6.2 Number of Effective Plates (Real Efficiency)

1.6.3 Plate Height

Reduced plate height

1.7 RETENTION PARAMETERS. 1.7.1 Retention Times

1.7.2 Retention Volume (or Elution Volume) VR

1.7.3 Hold‐up Volume (or Dead Volume) VM

1.7.4 Stationary Phase Volume

1.7.5 Retention (or Capacity) Factor k

An experimental approach to the retention factor k

1.8 SEPARATION (OR SELECTIVITY) FACTOR

1.9 RESOLUTION FACTOR

1.10 INFLUENCE OF SPEED OF THE MOBILE PHASE

1.10.1 Van Deemter Equation

Packing‐related term A = 2λ.dp

Gas (mobile phase) diffusion term B = 2γDG

Liquid (stationary phase) term C = CG + CL

1.10.2 Golay Equation

1.10.3 Knox Equation

1.11 OPTIMIZATION OF A CHROMATOGRAPHIC ANALYSIS

1.12 CLASSIFICATION OF CHROMATOGRAPHIC TECHNIQUES

1.12.1 Liquid Chromatography (LC)

Liquid/solid chromatography (LSC)

Liquid/liquid chromatography (LLC)

Ion chromatography (IC)

Size exclusion chromatography (SEC)

Affinity chromatography

1.12.2 Gas Chromatography (GC)

Gas/solid chromatography (GSC)

Gas/liquid chromatography (GLC)

1.12.3 Supercritical Fluid Chromatography (SFC)

Quantitative Analysis by Chromatography

1.13 PRINCIPLE AND BASIC RELATIONSHIP

1.14 CHROMATOGRAPHY SOFTWARE

1.15 EXTERNAL STANDARD METHOD

1.16 INTERNAL STANDARD METHOD

1.16.1 Calculation of the Relative Response Factors

1.16.2 Chromatogram of the Sample – Calculation of the Concentrations

1.17 INTERNAL NORMALIZATION METHOD

1.17.1 Calculation of the Relative Response Factors

1.17.2 Chromatogram of the Sample – Calculation of the Concentrations

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Note

Chapter 2 Gas Chromatography

Objectives

2.1 COMPONENTS OF A GC INSTALLATION

2.2 CARRIER GAS AND FLOW REGULATION

2.3 INJECTION CHAMBER. 2.3.1 Sample Introduction

Microsyringe and septum

Injection loops

2.3.2 Injectors

Split/splitless injector

Cold on‐column injection (COC)

Programmed temperature vaporization (PTV) injector

2.4 TEMPERATURE‐CONTROLLED OVEN

2.5 COLUMNS

2.5.1 Packed Columns

2.5.2 Capillary Columns (Open Tubular)

2.6 STATIONARY PHASES

2.6.1 Polysiloxanes

2.6.2 Polyethylene Glycols (PEG)

2.6.3 Ionic Liquids (IL)

2.6.4 Chiral Stationary Phases

Direct process

Indirect process

2.6.5 Solid Stationary Phases

2.7 MAIN DETECTORS

2.7.1 Universal or Near‐Universal Detectors. Flame ionization detector (FID)

Thermal conductivity detector (TCD)

Mass spectrometry detector (MSD)

2.7.2 Selective Detectors. Nitrogen phosphorus detector (NPD)

Electron capture detector (ECD)

Photo‐ionization detector (PID)

2.7.3 Detectors Providing Structural Data

2.8 OPTIMIZATION OF A SEPARATION

2.9 FAST CHROMATOGRAPHY AND MICROCHROMATOGRAPHY. 2.9.1 ‘Fast’ and ‘Ultra‐Fast’ Chromatography

2.9.2 Micro Gas Chromatography

2.10 RETENTION INDEXES AND STATIONARY PHASE CONSTANTS

2.10.1 Kovats Straight‐Line Relationship

2.10.2 Kovats Retention Index

2.10.3 McReynolds Constants for Stationary Phases

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 3 High‐Performance Liquid Chromatography

Objectives

3.1 DESIGN OF AN HPLC APPARATUS

3.2 PUMPS AND ELUTION GRADIENTS. 3.2.1 Eluent Pumps

3.2.2 Low‐Pressure and High‐Pressure Gradients

3.3 INJECTORS

3.4 COLUMNS

3.5 STATIONARY PHASES

3.5.1 Silica Gel, the Basic Material for Stationary Phases

3.5.2 Chemical Changes of Silica Gels

3.5.3 Stationary Phases Without Silica

3.5.4 Mixed Phases for Hydrophilic Interaction Chromatography

3.5.5 Stationary Phases for Chiral HPLC

3.6 MOBILE PHASES

3.7 SPECIFIC COLUMNS

3.7.1 Paired‐Ion Chromatography

3.7.2 Hydrophobic Interaction Chromatography (HIC)

3.7.3 Hydrophilic Interaction Chromatography (HILIC)

3.8 PRINCIPAL DETECTORS

3.8.1 Spectrophotometric Detectors

Monochromatic detection

Polychromatic detection

3.8.2 Spectrofluorometric Detector

3.8.3 Refractive Index Detector (RI Detector)

3.8.4 Evaporative Light Scattering Detector (ELSD)

3.8.5 Polarimetric Detector

3.8.6 Other Detectors

3.9 HPLC OPTIMIZATION

3.10 NEW DEVELOPMENTS IN HPLC

3.10.1 Reduction of Analysis Times

3.10.2 Reduction of Mobile Phase Volumes

3.10.3 Technology Related to HPLC Miniaturization

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 4 Ion Chromatography

Objectives

4.1 BASICS OF ION CHROMATOGRAPHY

4.2 STATIONARY PHASES FOR IEC

4.2.1 Synthesis Copolymers

4.2.2 Grafted Silicas

4.2.3 Polysaccharides

4.3 MOBILE PHASES

4.4 CONDUCTIVITY DETECTORS

4.5 WATER PEAK AND SYSTEM PEAK

4.5.1 Water Peak

4.5.2 System Peak

4.6 ION SUPPRESSORS OF THE ELECTROLYTE

4.6.1 Chemical Suppressor

4.6.2 Electrolytic suppressors

4.7 ION‐EXCLUSION CHROMATOGRAPHY

4.8 AMINO ACID ANALYSERS

4.9 PASSAGE FROM IEC TO ULTRA‐IEC

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 5 Thin‐Layer Chromatography

Objectives

5.1 PRINCIPLE OF THIN‐LAYER CHROMATOGRAPHY (TLC)

5.1.1 Sample Application

5.1.2 Developing the Plate

5.1.3 Post‐Chromatographic Revelation

5.1.4 Identification of Analytes through Mass Spectrometry

5.2 CHARACTERISTICS OF TLC

5.3 STATIONARY PHASES

5.4 SEPARATION AND RETENTION PARAMETERS

5.5 QUANTITATIVE TLC

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 6 Supercritical Fluid Chromatography

6.1 SUPERCRITICAL FLUIDS: A REVIEW

6.2 CARBON DIOXIDE AS A MOBILE PHASE

6.3 INSTRUMENTATION IN SFC

6.4 COMPARISON OF SFC WITH HPLC AND GC

6.5 SEPARATION OF ENANTIOMERS BY SFC

6.6 SFC IN CHROMATOGRAPHIC TECHNIQUES

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 7 Size‐Exclusion Chromatography

7.1 PRINCIPLE OF SEC

7.2 STATIONARY AND MOBILE PHASES

7.3 INSTRUMENTATION

7.4 APPLICATIONS OF SEC

Characterization of Macromolecules

7.5 POLYMER CHARACTERISTICS. 7.5.1 Conventional Calibration

7.5.2 Universal Calibration – Viscometric Detector

Viscometric detector

7.5.3 Triple Detection – Light‐Scattering Detector

Light‐scattering detector

7.6 FIELD FLOW FRACTIONATION (FFF)

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 8 High‐Performance Capillary Electrophoresis

8.1 PRINCIPLE OF CAPILLARY ELECTROPHORESIS

8.1.1 Zone Electrophoresis

8.1.2 Capillary Electrophoresis

8.2 MIGRATION OF ANALYTES IN THE CAPILLARY

8.2.1 Electrophoretic Mobility

8.2.2 Electroosmotic Flow (EOF)

8.2.3 Apparent Mobility

8.3 INSTRUMENTATION. 8.3.1 Different Modes of Injection

8.3.2 Detection Methods

8.4 ELECTROPHORETIC TECHNIQUES. 8.4.1 Capillary Zone Electrophoresis (CZE)

8.4.2 Micellar Electrokinetic Capillary Chromatography (MEKC)

8.4.3 Capillary Gel Electrophoresis (CGE)

8.4.4 Capillary Isoelectric Focusing (CIEF)

8.5 PERFORMANCE OF CE

8.5.1 Separation of Enantiomers

8.5.2 Separation Parameters

8.6 CAPILLARY ELECTROCHROMATOGRAPHY

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 9 Ultraviolet and Visible Absorption Spectroscopy

9.1 SPECTRAL REGION FROM UV‐VISIBLE TO VERY NEAR IR

9.2 THE ORIGIN OF ABSORPTIONS

9.3 ELECTRONIC TRANSITIONS OF ORGANIC COMPOUNDS

9.4 CHROMOPHORE GROUPS

9.5 SOLVENT EFFECTS

9.5.1 Hypsochromic Effect (Blue shift)

9.5.2 Bathochromic Effect (Red Shift)

9.5.3 Effect of pH

9.6 INSTRUMENTATION IN THE UV‐VISIBLE RANGE

9.6.1 Light Sources

9.6.2 Dispersive Systems

9.6.3 Detectors

9.7 CONFIGURATIONS OF UV/VIS SPECTROPHOTOMETERS

9.7.1 Single‐Beam, Single‐Channel Optical Spectrometers

9.7.2 Single‐Beam, Multichannel Spectrophotometers

9.7.3 Double‐Beam Optical Spectrometers (Sequential Type)

9.8 MEASUREMENT CELLS AND DEVICES

9.9 QUANTITATIVE ANALYSIS: LAWS OF MOLECULAR ABSORPTION. 9.9.1 Beer–Lambert Law

9.9.2 Additivity of Absorbances

9.10 METHODS IN QUANTITATIVE ANALYSIS. 9.10.1 Colorimetry

9.10.2 Analysis of a Single Analyte

9.10.3 Confirmatory Analysis

9.10.4 Multicomponent Analysis (MCA)

Basic algebraic method

Multiwavelength linear regression analysis (MLRA)

9.10.5 Deconvolution

9.11 METHODS OF BASELINE CORRECTION

9.11.1 Modelling by Polynomial Function Fitting

9.11.2 Morton–Stubbs Three‐Point Correction

9.12 RELATIVE ERROR DISTRIBUTION DUE TO INSTRUMENTS

9.13 DERIVATIVE SPECTROSCOPY

9.14 VISUAL COLORIMETRY BY TRANSMISSION OR REFLECTANCE

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 10 Infrared and Raman Spectroscopy

10.1 THE ORIGIN OF LIGHT ABSORPTION IN THE INFRARED REGION

10.2 PRESENTATION OF ABSORPTION IN THE INFRARED REGION

10.3 ROTATIONAL–VIBRATIONAL BANDS IN THE MID‐IR REGION

10.4 MECHANICAL MODEL FOR VIBRATIONAL INTERACTIONS BETWEEN ATOMS

10.5 REAL COMPOUNDS

10.6 CHARACTERISTIC BANDS FOR ORGANIC COMPOUNDS

10.7 INFRARED SPECTROMETERS AND ANALYSERS

10.7.1 Fourier Transform Infrared (FTIR) Spectrometers

10.7.2 Mid‐Infrared Analysers

10.8 SOURCES AND DETECTORS USED IN THE MID‐IR REGION. 10.8.1 Light Sources

10.8.2 Detectors

10.9 SAMPLE ANALYSIS TECHNIQUES

10.9.1 Optical Materials

10.9.2 Transmission Processes

10.9.3 Reflection Processes

Attenuated total reflection (ATR)

Specular reflection

Diffuse reflection

10.10 COUPLED TECHNIQUES. 10.10.1 Chemical Imaging Spectroscopy

10.10.2 GC/FTIR Coupling

10.11 COMPARISON OF SPECTRA

10.12 QUANTITATIVE ANALYSIS

10.12.1 Quantitative Analysis in the Mid‐Infrared Region

Near Infrared

10.13 ANALYSIS IN THE NEAR INFRARED REGION

10.13.1 Sequential, Spectrograph and FT‐NIR Instrument Types

10.13.2 NIRS Applications

Raman Spectroscopy

10.14 PRINCIPLE OF THE RAMAN EFFECT

10.15 INSTRUMENTATION

10.16 FIELDS OF APPLICATION

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 11 Fluorescence and Chemiluminescence Spectroscopy

11.1 ORIGIN OF FLUORESCENCE

11.1.1 Absorption and Relaxation Process

Absorption

Internal conversion

Fluorescence

Phosphorescence

11.1.2 Lifespan of Fluorescence

11.1.3 Stokes Shift

11.2 FLUORESCENT COMPOUNDS

11.3 RELATIONSHIP BETWEEN FLUORESCENCE AND CONCENTRATION

11.4 RAYLEIGH SCATTERING AND RAMAN SCATTERING

11.4.1 Rayleigh Scattering

11.4.2 Raman Scattering

11.5 INSTRUMENTATION

11.5.1 Ratio Fluorometers (Ratiometric Method)

11.5.2 Spectrofluorometers

11.5.3 Time‐Resolved Spectrofluorometers

11.6 SPECIFICITIES AND APPLICATIONS

11.7 CHEMILUMINESCENCE

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 12 X‐Ray Fluorescence Spectroscopy

12.1 BASIC PRINCIPLES

12.2 THE X‐RAY FLUORESCENCE SPECTRUM

12.3 EXCITATION SOURCES IN X‐RAY FLUORESCENCE

12.3.1 X‐Ray Generators

12.3.2 Radioisotope Sources of X‐rays

12.3.3 Other Sources of Excitation. α Emitters

Fast electrons

12.4 DETECTION OF X‐RAYS

12.5 DIFFERENT TYPES OF INSTRUMENTS

12.5.1 Energy‐Dispersive X‐Ray Fluorescence Instruments (ED‐XRF)

12.5.2 Wavelength‐Dispersive X‐Ray Fluorescence (WD‐XRF) Spectrometers

12.5.3 Filter Instruments (Fixed Single Channel)

12.6 SAMPLE PREPARATION

12.7 X‐RAY ABSORPTION – X‐RAY DENSITOMETRY

12.8 QUANTITATIVE ANALYSIS BY X‐RAY FLUORESCENCE

12.9 APPLICATIONS OF X‐RAY FLUORESCENCE

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 13 Atomic Absorption Spectroscopy

13.1 THE EFFECT OF TEMPERATURE ON AN ELEMENT

13.2 APPLICATIONS TO MODERN INSTRUMENTS

13.3 MEASUREMENTS BY AAS

13.4 BASIC INSTRUMENTATION FOR AAS

13.4.1 Sources

Hollow cathode lamps (HCL)

Electrodeless discharge lamps (EDL)

Xenon lamp

13.4.2 Thermal Devices for Obtaining Atomic Vapours. Atomization using a flame – burner and nebulizer

Thermoelectric atomization

Hydride generator

13.4.3 Monochromators

13.4.4 Detectors

13.5 PHYSICAL AND CHEMICAL DISTURBANCES

13.5.1 Spectral Interferences

Superimposition of lines

Superimposition of absorption and emission of the same element

Molecular absorptions

Diffusion of incident light

13.5.2 Chemical Interferences

13.5.3 Physical Interferences

13.6 CORRECTIONS OF NONSPECIFIC ABSORPTIONS

13.6.1 Background Correction Using a Deuterium Lamp

13.6.2 Background Noise Correction using the Zeeman Effect or a Pulsed Lamp

13.7 SENSITIVITY AND DETECTION LIMITS IN AAS

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 14 Atomic Emission Spectroscopy

14.1 OPTICAL EMISSION SPECTROSCOPY (OES)

14.2 PRINCIPLE OF ATOMIC EMISSION ANALYSIS

14.3 DISSOCIATION OF THE SAMPLE INTO ATOMS OR IONS

14.3.1 Gas Plasma Excitation

14.3.2 Excitation by Sparks or Laser

14.3.3 Excitation by Glow Discharge (GD)

14.4 DISPERSIVE SYSTEMS AND SPECTRAL LINES

14.5 SIMULTANEOUS AND SEQUENTIAL INSTRUMENTS

14.5.1 Fixed Optic Apparatus Containing a Polychromator

14.5.2 Fixed Optic, Echelle Grating Apparatus

14.5.3 Wavelength‐Scanning Instruments (Monochromator Type)

14.6 PERFORMANCE

14.6.1 Sensitivity Thresholds and Detection Limits of the Spectrometer

14.6.2 Resolving Power

14.6.3 Linear Dispersion and Bandwidth

14.7 APPLICATIONS OF ATOMIC EMISSION SPECTROMETRY

14.8 FLAME PHOTOMETRY

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 15 Nuclear Magnetic Resonance Spectroscopy

15.1 GENERAL INTRODUCTION

15.2 SPIN/MAGNETIC FIELD INTERACTION FOR A NUCLEUS

15.3 NUCLEI THAT CAN BE STUDIED BY NMR

15.4 BLOCH THEORY FOR I = ½

15.5 LARMOR FREQUENCY

15.6 SPECTRUM OBTAINED BY PULSED NMR

15.7 THE PROCESSES OF NUCLEAR RELAXATION

15.8 CHEMICAL SHIFT

15.9 MEASURING THE CHEMICAL SHIFT

15.10 SHIELDING AND DESHIELDING OF THE NUCLEI

15.11 FACTORS INFLUENCING CHEMICAL SHIFTS

15.11.1 Inductive Effects

15.11.2 Resonance Effects

15.11.3 Anisotropy and Induced Local Field Effects

15.11.3.1 Other Effects (Solvents, Hydrogen Bonding, and Matrix)

15.12 HYPERFINE STRUCTURE – SPIN–SPIN COUPLING

15.12.1 Typical Heteronuclear Coupling: Hydrogen Fluoride

15.12.2 Homonuclear Coupling – Weakly Coupled Systems

15.12.3 Homonuclear Coupling – Strongly Coupled Systems

AB system

15.13 SPIN DECOUPLING AND PARTICULAR PULSE SEQUENCES

15.14 13C NMR

15.15 TWO‐DIMENSIONAL NMR (2D‐NMR)

15.15.1 Homonuclear Correlation: 1H–1H COSY

15.15.2 Homonuclear Correlation: 1H–1H NOESY

15.15.3 Heteronuclear Correlation: 1H–13C HETCOR and HSQC

15.16 FLUORINE AND PHOSPHORUS NMR

15.17 NMR APPLICATIONS. 15.17.1 Structural Analysis

15.17.2 Quantitative NMR

15.17.3 Analysis via Time‐Resolved NMR (TR‐NMR)

15.17.4 Nuclear Magnetic Resonance Imagery

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 16 Mass Spectrometry

16.1 BASIC PRINCIPLES

16.1.1 Operating Principle of a Mass Spectrometer

16.1.2 Mass Spectrometer Performance Levels. Upper mass limit

Sensitivity

Resolving power

16.2 SAMPLE INTRODUCTION

16.2.1 Direct Injection

16.2.2 Sample Introduction in Coupled Techniques

16.2.3 Pumping Systems

16.3 MAIN VACUUM IONIZATION TECHNIQUES

16.3.1 Electron Ionization (EI)

16.3.2 Positive Chemical Ionization (CI)

16.3.3 Fast Atom Bombardment (FAB)

16.3.4 Matrix‐Assisted Laser Desorption Ionization (MALDI)

16.4 ATMOSPHERIC PRESSURE IONIZATION (API)

16.4.1 Spray Ionization

Electrospray ionization (ESI) or ion spray

Photoionization

Atmospheric pressure chemical ionization (APCI)

16.4.2 Plasma Ionization

16.4.3 Choice of Ionization Method

16.5 ANALYSERS. 16.5.1 Magnetic Analyser Spectrometer

16.5.2 Multiple Analysers

Ion accelerator

Electric sector

Magnetic analyser

16.5.3 Time‐of‐Flight Analysers (TOF)

16.5.4 Linear Quadrupole Analysers

16.5.5 Quadrupole Ion‐Trap Analysers

16.5.6 Ion Cyclotron Resonance Analysers (ICRMS)

16.5.7 Tandem mass spectrometry (MS/MS)

16.6 ION DETECTION

Some Applications of Mass Spectrometry

16.7 IDENTIFICATION BY MEANS OF A SPECTRAL LIBRARY

16.8 ANALYSIS OF THE ELEMENTAL COMPOSITION OF IONS. 16.8.1 Search for the Raw Formula

16.8.2 Method Based Upon Isotopic Abundances

16.8.3 Determination of Molecular Masses from Multicharged Ions

16.9 FRAGMENTATION OF ORGANIC IONS

16.9.1 Basic Rules

16.9.2 Fragmentation of an Ionized σ Bond

16.9.3 α Fragmentation

16.9.4 Fragmentations with Rearrangements

16.9.5 Metastable Ion Peaks

16.10 PROTEIN ANALYSIS

16.11 ICP‐MS COUPLING

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 17 Isotopic Analyses and Labelling Methods

17.1 PRINCIPLE OF ISOTOPIC DILUTION METHODOLOGIES

17.2 MEASUREMENT BY ADDING A RADIOISOTOPE. 17.2.1 Basic Method

17.2.2 Substoichiometric Method

17.2.3 Radioimmunoassays (RIA)

17.3 MEASURING BY ADDING A STABLE ISOTOPE

17.4 MEASURING ISOTOPE RATIOS FOR AN ELEMENT

17.5 MEASUREMENTS USING ENZYMATIC LABELLING

17.5.1 Antigens and Antibodies

17.5.2 Enzymatic‐Immunoassay (EIA) Method

Absorbance/concentration relationship

17.5.3 Other Immunoenzymatic Techniques

17.5.4 Advantages and Limitations of the ELISA Technique in Chemistry

17.5.5 Immunofluorescence in Homogeneous Phase by Fluorescent Polarization

17.6 NEUTRON ACTIVATION ANALYSIS (NAA) 17.6.1 Principle

17.6.2 Sources of Thermal Neutrons

17.6.3 Induced Activity – Irradiation Time

17.6.4 Measurement Principles and Applications

17.7 REVIEW OF RADIOACTIVE ISOTOPES

17.8 HALF‐LIFE τ, RADIOACTIVITY CONSTANT λ AND ACTIVITY A

17.9 RADIOACTIVE LABELLING OF ORGANIC MOLECULES

17.10 DETECTION AND COUNTING OF RADIOACTIVITY

17.11 SPECIAL PRECAUTIONS

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Note

Chapter 18 Specific Analysers

18.1 SPECIFIC ANALYSES

18.2 ELEMENTAL ORGANIC ANALYSIS

18.2.1 The Traditional Methods of Pregl and Simon

18.2.2 Current Elemental Organic CHNS–O Analysers

18.3 TOTAL NITROGEN ANALYSERS (TN)

18.4 TOTAL SULFUR ANALYSERS

18.5 TOTAL CARBON ANALYSERS (TC, TIC, AND TOC)

18.6 MERCURY ANALYSERS

18.7 ION MOBILITY SPECTROMETRY (IMS)

Field instruments

Laboratory instruments

18.8 KARL FISCHER VOLUMETRIC METHOD

18.8.1 Review of the Reactions Used

18.8.2 Preliminary Assay of the Karl Fischer Reagent. By direct titration

By back titration

18.8.3 Determination of the Water Content of a Sample. By direct titration

By back titration

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 19 Potentiometric and Ionometric Methods

19.1 MEASUREMENT CELLS

19.2 THE PH ELECTRODE

19.3 ION‐SELECTIVE ELECTRODES (ISE)

19.3.1 Crystalline Membrane

19.3.2 Polymer Membrane

19.3.3 Hydrophobic Membrane for Gases

19.4 QUANTIFICATIONS METHODS

19.4.1 Direct Ionometry – External Calibration

19.4.2 Multiple Addition Method

19.4.3 Potentiometric Titration

19.5 APPLICATIONS

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 20 Voltammetric Methods

20.1 THE VOLTAMMETRIC METHOD

20.2 THE DROPPING MERCURY ELECTRODE

20.3 DIRECT CURRENT POLAROGRAPHY (DCP)

20.4 DIFFUSION CURRENT

20.5 PULSE POLAROGRAPHY

20.5.1 Normal Pulse Polarography (NPP)

20.5.2 Differential Pulse Polarography (DPP)

20.5.3 Square Wave Polarography (SWP)

20.6 ALTERNATING CURRENT POLAROGRAPHY (ACP)

20.7 STRIPPING VOLTAMMETRY

20.8 COULOMETRIC MEASUREMENTS

20.9 COULOMETRIC TITRATION OF WATER CONTENT

20.10 VOLTAMMETRIC DETECTION IN HPLC AND HPCE

20.11 AMPEROMETRIC SENSORS

20.11.1 Clark Oxygen Probe

20.11.2 Redox Sensors for Gas or Vapours

20.11.3 Biosensors with Amperometric Detection

KEY POINTS OF THE CHAPTER

PROBLEMS

SOLUTIONS

Chapter 21 Sample Preparation

21.1 THE NEED FOR SAMPLE PRETREATMENT

21.2 SOLID PHASE EXTRACTION (SPE)

21.3 IMMUNO‐AFFINITY EXTRACTION

21.4 MICRO‐EXTRACTION PROCESSES. 21.4.1 Solid‐Phase Micro‐Extraction (SPME)

21.4.2 Liquid‐Phase Micro‐Extraction (LPME)

21.5 GAS EXTRACTION ON A CARTRIDGE OR A DISC

21.6 HEADSPACE

21.7 SUPERCRITICAL PHASE EXTRACTION (SPE)

21.8 MICROWAVE REACTORS

21.9 ON‐LINE ANALYSERS

KEY POINTS OF THE CHAPTER

Chapter 22 Basic Statistical Parameters

22.1 CENTRAL VALUE, ACCURACY, AND RELIABILITY OF A SET OF MEASUREMENTS

22.2 VARIANCE AND STANDARD DEVIATION

22.3 RANDOM OR INDETERMINATE ERRORS

22.4 CONFIDENCE INTERVAL OF THE MEAN

22.5 COMPARISON OF RESULTS – PARAMETRIC TESTS

22.5.1 Comparison of Two Variances, Fisher–Snedecor Law

22.5.2 Comparison of Two Experimental Means, and

22.5.3 Estimation of the Detection Limit of an Analyte

22.6 REJECTION CRITERIA USING THE Q QUOTIENT (OR DIXON TEST)

22.7 CALIBRATION CURVES

22.7.1 Simple Linear Regression

22.7.2 Multiple Linear Regression

22.8 ROBUST METHODS OR NONPARAMETRIC TESTS

22.9 OPTIMIZATION WITH THE ONE‐FACTOR‐AT‐A‐TIME (OFAT) METHOD

PROBLEMS

SOLUTIONS

Appendix Table of Some Useful Constants

Bibliography

Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Third Edition

.....

This important relation can also be written:

(1.28)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Chemical Analysis
Подняться наверх