Graph Spectral Image Processing

Graph Spectral Image Processing
Автор книги: id книги: 2135455     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16715,1 руб.     (182,12$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119850816 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Оглавление

Gene Cheung. Graph Spectral Image Processing

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Graph Spectral Image Processing

Introduction to Graph Spectral Image Processing

I.1. Introduction

I.2. Graph definition

I.3. Graph spectrum

I.4. Graph variation operators

I.5. Graph signal smoothness priors

I.6. References

1. Graph Spectral Filtering

1.1. Introduction

1.2. Review: filtering of time-domain signals

1.3. Filtering of graph signals

1.3.1. Vertex domain filtering

1.3.2. Spectral domain filtering

1.3.3. Relationship between graph spectral filtering and classical filtering

1.4. Edge-preserving smoothing of images as graph spectral filters

1.4.1. Early works

1.4.2. Edge-preserving smoothing

1.5. Multiple graph filters: graph filter banks

1.5.1. Framework

1.5.2. Perfect reconstruction condition

1.5.2.1. Design of perfect reconstruction transforms: undecimated case

1.5.2.2. Design of perfect reconstruction transforms: decimated case

1.6. Fast computation

1.6.1. Subdivision

1.6.2. Downsampling

1.6.3. Precomputing GFT

1.6.4. Partial eigendecomposition

1.6.5. Polynomial approximation

1.6.6. Krylov subspace method

1.7. Conclusion

1.8. References

2. Graph Learning

2.1. Introduction

2.2. Literature review

2.2.1. Statistical models

2.2.2. Physically motivated models

2.3. Graph learning: a signal representation perspective

2.3.1. Models based on signal smoothness

2.3.2. Models based on spectral filtering of graph signals

2.3.2.1. Stationarity-based learning frameworks

2.3.2.2. Graph dictionary-based learning frameworks

2.3.3. Models based on causal dependencies on graphs

2.3.4. Connections with the broader literature

2.4. Applications of graph learning in image processing

2.5. Concluding remarks and future directions

2.6. References

3. Graph Neural Networks

3.1. Introduction

3.2. Spectral graph-convolutional layers

3.3. Spatial graph-convolutional layers

3.4. Concluding remarks

3.5. References

4. Graph Spectral Image and Video Compression

4.1. Introduction

4.1.2.Literature review

4.1.3.Outline of the chapter

4.2. Graph-based models for image and video signals

4.2.1.Graph-based models for residuals of predicted signals

4.2.1.1. A general model for residual signals

4.2.1.2. 1D line models for residual signals

4.2.2.DCT/DSTs as GFTs and their relation to 1D models

4.2.3.Interpretation of graph weights for predictive transform coding

4.3. Graph spectral methods for compression. 4.3.1.GL-GFT design. 4.3.1.1. Generalized graph Laplacian estimation

4.3.1.2. GL-GFT construction

4.3.1.3. Theoretical justifications for graph learning from data

4.3.2.EA-GFT design. 4.3.2.1. EA-GFT construction

4.3.2.2. Theoretical justifications for EA-GFT

4.3.3.Empirical evaluation of GL-GFT and EA-GFT. 4.3.3.1. Experimental setup

4.3.3.2. Compression results

4.4. Conclusion and potential future work

4.5. References

5. Graph Spectral 3D Image Compression

5.1. Introduction to 3D images. 5.1.1. 3D image definition

5.1.2. Point clouds and meshes

5.1.3. Omnidirectional images

5.1.4. Light field images

5.1.5. Stereo/multi-view images

5.2. Graph-based 3D image coding: overview

5.3. Graph construction

5.3.1. Geometry-based approaches

5.3.2.Joint geometry and color-based approaches

5.3.2.1. Segmenting the graphs

5.3.2.2. Learning the graph

5.3.3. Separable transforms

5.4. Concluding remarks

5.5. References

6. Graph Spectral Image Restoration

6.1. Introduction

6.1.1. A simple image degradation model

6.1.2. Restoration with signal priors

6.1.3. Restoration via filtering

6.1.4. GSP for image restoration

6.2. Discrete-domain methods

6.2.1. Non-local graph-based transform for depth image denoising

6.2.1.1. Non-local graph-based transform

6.2.1.2. Algorithm implementation and performance demonstration

6.2.2. Doubly stochastic graph Laplacian

6.2.2.1. Doubly stochastic Laplacian and spectral interpretation

6.2.2.2. Algorithm implementation and performance comparisons

6.2.3. Reweighted graph total variation prior

6.2.3.1. Kernel estimation from skeleton image

6.2.3.2. Reweighted graph total variation and spectral analysis

6.2.3.3. Algorithm implementation

6.2.3.4. Performance demonstration

6.2.4. Left eigenvectors of random walk graph Laplacian

6.2.4.1. JPEG soft decoding

6.2.4.2. LERaG prior

6.2.4.3. Property of LERaG

6.2.4.4. Algorithm implementation

6.2.4.5. Performance demonstration

6.2.5. Graph-based image filtering

6.3. Continuous-domain methods

6.3.1. Continuous-domain analysis of graph Laplacian regularization

6.3.1.1. Interpreting the graph Laplacian regularizer

6.3.1.2. Optimal graph for image denoising

6.3.1.3. Experimentation

6.3.2. Low-dimensional manifold model for image restoration

6.3.2.1. The low-dimensional manifold model

6.3.3. LDMM as graph Laplacian regularization

6.4. Learning-based methods

6.4.1. CNN with GLR

6.4.1.1. Combining advantages of GLR and CNN

6.4.1.2. DeepGLR Framework

6.4.1.3. Result demonstration

6.4.2. CNN with graph wavelet filter

6.4.2.1. DeepAGF framework

6.4.2.2. Result demonstration

6.5. Concluding remarks

6.6. References

7. Graph Spectral Point Cloud Processing

7.1. Introduction

7.2. Graph and graph-signals in point cloud processing

7.3. Graph spectral methodologies for point cloud processing

7.3.1. Spectral-domain graph filtering for point clouds

7.3.2. Nodal-domain graph filtering for point clouds

7.3.3. Learning-based graph spectral methods for point clouds

7.4. Low-level point cloud processing

7.4.1.Point cloud denoising

7.4.2. Point cloud resampling

7.4.2.1. Downsampling

7.4.2.2. Upsampling

7.4.3. Datasets and evaluation metrics

7.5. High-level point cloud understanding

7.5.1. Data auto-encoding for point clouds

7.5.1.1. Encoder

7.5.1.2. Decoder

7.5.1.3. Loss function

7.5.2. Transformation auto-encoding for point clouds

7.5.2.1. Graph signal transformation

7.5.2.3. The algorithm of GraphTER

7.5.3. Applications of GraphTER in point clouds

7.5.4. Datasets and evaluation metrics

7.6. Summary and further reading

7.7. References

8. Graph Spectral Image Segmentation

8.1. Introduction

8.2. Pixel membership functions

8.2.1. Two-class problems

8.2.2. Multiple-class problems

8.2.3. Multiple images

8.3. Matrix properties

8.4. Graph cuts

8.4.1. The Mumford–Shah model

8.4.2. Graph cuts minimization

8.5. Summary

8.6. References

9. Graph Spectral Image Classification

9.1. Formulation of graph-based classification problems

9.1.1. Graph spectral classifiers with noiseless labels

9.1.2. Graph spectral classifiers with noisy labels

9.2. Toward practical graph classifier implementation

9.2.1. Graph construction

9.2.2. Experimental setup and analysis

9.2.2.1. Noiseless labels

9.2.2.2. Noisy labels

9.3. Feature learning via deep neural network

9.3.1. Deep feature learning for graph construction

9.3.2. Iterative graph construction

9.3.3. Toward practical implementation of deep feature learning

9.3.4. Analysis on iterative graph construction for robust classification

9.3.5. Graph spectrum visualization

9.3.6. Classification error rate comparison using insufficient training data

9.3.7. Classification error rate comparison using sufficient training data with label noise

9.4. Conclusion

9.5. References

10. Graph Neural Networks for Image Processing

10.1. Introduction

10.2. Supervised learning problems

10.2.1. Point cloud classification

10.2.2. Point cloud segmentation

10.2.3. Image denoising

10.3. Generative models for point clouds

10.3.1. Point cloud generation

10.3.2. Shape completion

10.4. Concluding remarks

10.5. References

List of Authors

Index

B, C

D, E

F

G

I

L, M, O

P

R, S

T, V

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Image, Field Director – Laure Blanc-Feraud

.....

There are various methods available for designing perfect reconstruction graph transforms. First, let us consider undecimated transforms that exhibit symmetrical structure.

An undecimated transform has no sampling, i.e. Sk = IN for all k. Therefore, the analysis and synthesis transforms, respectively, are represented in the following simple forms:

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Graph Spectral Image Processing
Подняться наверх