Industrial Carbon and Graphite Materials

Industrial Carbon and Graphite Materials
Автор книги: id книги: 2012215     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 43284,1 руб.     (479,93$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527674053 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

An excellent overview of industrial carbon and graphite materials, especially their manufacture, use and applications in industry.<br /> Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon.<br />Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.

Оглавление

Группа авторов. Industrial Carbon and Graphite Materials

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Industrial Carbon and Graphite Materials

Industrial Carbon and Graphite Materials

Preface

1 Introduction: The Future of Carbon Materials – The Industrial Perspective

1.1 Overview

1.2 Traditional Carbon and Graphite Materials

1.3 Modern Application of Carbon Materials

1.4 Future Application of Carbon Materials

1.5 Conclusion

2 The Element Carbon*

2.1 Introduction

2.2 Diamond

2.3 Graphite

2.4 Non‐graphitic Carbon

2.5 Carbyne and Chaoite

2.6 Nanoforms of Carbon

References

Further Reading

Note

3 History of Carbon Materials

3.1 Origin of Elemental Carbon

3.2 Formation and Economic Development of Natural Diamonds

3.3 Formation and Use of Natural Graphite

3.4 History of Charcoal from Wood and Coke from Coal

3.5 History of Carbon Black

3.6 History of Activated Carbon

3.7 Development of Synthetic Graphite

3.8 Development of Synthetic Diamonds

3.9 Development of Carbon Fibers

3.10 Discovery and Inventions of Nanocarbons: Fullerenes, Nanotubes, and Graphene

References

Note

4 Recommended Terminology for the Description of Carbon as a Solid (© 1995 IUPAC)

List of Terms

Description of the Terms. Acetylene Black. Description

Notes

Acheson Graphite. Description

Notes

Activated Carbon. Description

Notes

Activated Charcoal. Description

Agranular Carbon. Description

Notes

Amorphous Carbon. Description

Notes

Artificial Graphite. Description

Notes

Baking. Description

Binder. Description

Binder Coke. Description

Notes

Brooks and Taylor Structure in the Carbonaceous Mesophase. Description

Notes

Bulk Mesophase. Description

Notes

Calcined Coke. Description

Notes

Carbon. Description

Notes

Carbon Artifact. Description

Notes

Carbon Black. Description

Notes

Carbon–Carbon Composite. Description

Carbon Cenospheres. Description

Carbon Cloth. Description

Notes

Carbon Electrode. Description

Notes

Carbon Felt. Description

Notes

Carbon Fiber. Description

Notes

Carbon Fiber Fabrics. Description

Carbon Fibers Type HM. Description

Notes

Carbon Fibers Type HT. Description

Notes

Carbon Fibers Type IM. Description

Notes

Carbon Fibers Type LM (Low Modulus) Description

Notes

Carbon Fibers Type UHM. Description

Carbon Material. Description

Notes

Carbon Mix. Description

Carbon Whiskers. Description

Carbonaceous Mesophase. Description

Notes

Carbonization. Description

Notes

Catalytic Graphitization. Description

Notes

Char. Description

Notes

Charcoal. Description

Notes

Coal‐Derived Pitch Coke. Description

Notes

Coal‐Tar Pitch. Description

Notes

Coalification. Description

Notes

Coke. Description

Notes

Coke Breeze. Description

Colloidal Carbon. Description

Notes

Delayed Coke. Description

Notes

Delayed Coking Process. Description

Notes

Diamond. Description

Notes

Diamond by CVD. Description

Notes

Diamond‐Like Carbon Films. Description

Notes

Electrographite. Description

Exfoliated Graphite. Description

Notes

Fibrous Activated Carbon. Description

Notes

Fibrous Carbon. Description

Filamentous Carbon. Description

Notes

Filler. Description

Filler Coke. Description

Notes

Fluid Coke. Description

Notes

Fullerenes. Description

Notes

Furnace Black. Description

Notes

Gas‐Phase‐Grown Carbon Fibers. Description

Notes

Glass‐Like Carbon. Description

Notes

Granular Carbon. Description

Notes

Graphene Layer. Description

Notes

Graphite. Description

Notes

Graphite Electrode. Description

Graphite Fibers. Description

Notes

Graphite Material. Description

Notes

Graphite Whiskers. Description

Notes

GRAPHITIC CARBON. Description

Notes

Graphitizable Carbon. Description

Notes

Graphitization. Description

Notes

Graphitization Heat Treatment. Description

Notes

Graphitized Carbon. Description

Notes

Green Coke. Description

Notes

Hard Amorphous Carbon Films. Description

Hexagonal Graphite. Description

Notes

High‐Pressure Graphitization. Description

Highly Oriented Pyrolytic Graphite. Description

Notes

Isotropic Carbon. Description

Notes

Isotropic Pitch‐Based Carbon Fibers. Description

Notes

Lamp Black. Description

Mesogenic Pitch. Description

Mesophase Pitch. Description

Notes

Mesophase Pitch‐Based Carbon Fibers. Description

Metallurgical Coke. Description

Notes

Microporous Carbon. Description

Notes

MPP‐Based Carbon Fibers. Description

Natural Graphite. Description

Notes

Needle Coke. Description

Notes

Non‐graphitic Carbon. Description

Notes

Non‐graphitizable Carbon. Description

Notes

Nuclear Graphite. Description

Notes

Pan‐Based Carbon Fibers. Description

Particulate Carbon. Description

Notes

Petroleum Coke. Description

Notes

Petroleum Pitch. Description

Notes

Pitch. Description

Notes

Pitch‐Based Carbon Fibers. Description

Notes

Polycrystalline Graphite. Description

Notes

Polygranular Carbon. Description

Notes

Polygranular Graphite. Description

Notes

Premium Coke. Description

Notes

Puffing. Description

Notes

Puffing Inhibitor. Description

Notes

Pyrolytic Carbon. Description

Notes

Pyrolytic Graphite. Description

Notes

Raw Coke. Description

Notes

Rayon‐Based Carbon Fibers. Description

Notes

Regular Coke. Description

Notes

Rhombohedral Graphite. Description

Notes

Semicoke. Description

Notes

Soot. Description

Notes

Spherical Carbonaceous Mesophase. Description

Stabilization Treatment of Thermoplastic Precursor Fibers for Carbon Fibers. Description

Notes

Stress Graphitization. Description

Notes

Synthetic Graphite. Description

Notes

Thermal Black. Description

References

Note

5 Graphite*

5.1 Graphite Single Crystal

5.2 Natural Graphite. 5.2.1 Occurrence and Properties

5.3 Synthetic Graphite

References

Further Reading

Notes

6.1 Introduction to Polygranular Carbon and Graphite Materials

References

6.1.1 Polygranular Carbon and Graphite Materials

6.1.1.1 The Relevance of Raw Materials

6.1.1.1.1 Petroleum Coke

6.1.1.1.2 Coal‐Tar Pitch Coke

6.1.1.1.3 Anthracite

6.1.1.1.4 Binder Materials

6.1.1.1.4.1 Coal‐Tar Pitch

6.1.1.1.4.2 Petroleum Pitch

6.1.1.1.4.3 Thermosetting Resins

References

Further Reading

Note

6.1.2 Petroleum Coke*

6.1.2.1. Introduction

6.1.2.2. Physical and Chemical Properties. 6.1.2.2.1 Physical Properties

6.1.2.2.2 Chemical Properties and Composition

6.1.2.3. Production

6.1.2.3.1 Production Processes

6.1.2.3.1.1 Delayed Coking

6.1.2.3.1.2 Fluid Coking

6.1.2.3.1.3 Flexicoking

6.1.2.3.2 Calcination

6.1.2.3.2.1 Rotary Kiln Calciner

6.1.2.3.2.2 Rotary Hearth Calciner

6.1.2.3.2.3 Shaft Kiln Calciner

6.1.2.4. Uses and Economic Aspects

6.1.2.4.1 Green Petroleum Coke

6.1.2.4.2 Calcined Petroleum Coke. 6.1.2.4.2.1 Anode‐Grade Coke (Regular Calcinate)

6.1.2.4.2.2 Needle Coke

6.1.2.5. Quality Aspects

6.1.2.5.1 Green Coke

6.1.2.5.2 Regular Calcinate

6.1.2.5.3 Needle Coke

6.1.2.6. Environmental and Safety Aspects. 6.1.2.6.1 Green Coke

6.1.2.6.2 Calcined Petroleum Coke

References

Further Reading

Note

6.1.3 Coal-Tar Pitch Coke

6.1.3.1. Introduction

6.1.3.2. Physical and Chemical Properties. 6.1.3.2.1 Physical Properties

6.1.3.2.2 Chemical Properties

6.1.3.3. Production of Pitch Coke

6.1.3.3.1 Production Process

6.1.3.3.1.1 Chamber Coking Process

6.1.3.3.1.2 Delayed Coker and Calciner

6.1.3 Delayed Coking

6.1.3 Calcination

6.1.3.4. Uses

6.1.3.4.1 Aggregate of Graphite Electrode for Aluminum Smelting

6.1.3.4.2 Aggregate for Graphite Electrode in Electric Arc Furnace Steelmaking

6.1.3.5. Environmental and Safety Aspects

References

6.1.4 Natural Graphite*

6.1.4.1. Occurrence and Classification

6.1.4.2. Mining and Cleaning

6.1.4.3. Applications of Natural Graphite

6.1.4.4. Economic Aspects

References

Note

6.1.5 Tar and Pitch*

6.1.5.1. Origin, Classification, and Industrial Importance of Tars and Pitches. 6.1.5.1.1 Origin and Classification

6.1.5.1.2 History

6.1.5.1.3 Industrial Importance

6.1.5.2. Properties

6.1.5.3. Processing of Coke‐Oven Coal Tar. 6.1.5.3.1 Survey

6.1.5.3.2 Primary Distillation

6.1.5.3.3 Processing of Coal‐Tar Pitch. 6.1.5.3.3.1 Cooling

6.1.5.3.3.2 Production of Electrode Pitch

6.1.5.3.3.3 Production of Special Pitches

6.1.5.3.4 Processing of Tar Distillates

6.1.5.3.4.1 Carbon Black Oils

6.1.5.3.4.2 Impregnating Oils

6.1.5.3.4.3 Fuel oils

6.1.5.3.4.4 Diesel Fuels

6.1.5.3.4.5 Fluxing Oils

6.1.5.4. Processing of Low‐Temperature Coal Tars

6.1.5.5. Processing of Other Tars and Tarlike Raw Materials. 6.1.5.5.1 Lignite Tars

6.1.5.5.2 Peat Tars

6.1.5.5.3 Wood Tars

6.1.5.5.4 Oil‐Shale Tars

6.1.5.5.5 Pyrolysis Residual Oils

6.1.5.6. Uses of Tar Products and Their Economic Importance

6.1.5.7. Toxicology and Ecotoxicology. 6.1.5.7.1 Toxicology

6.1.5.7.2 Ecotoxicology

6.1.5.7.3 Classification and Legislation

References

Notes

6.1.6 Thermosetting Resins*

References

Note

6.2 Manufacturing*

6.2.1. Grinding and Sizing

6.2.2. Mixing

6.2.3 Forming

6.2.3.1 Molding

6.2.3.2 Isostatic Molding

6.2.3.3 Vibration Molding

6.2.3.4 Other Forming Methods

6.2.4. Baking

6.2.4.1 Ring Furnace

6.2.4.2 Car‐Bottom Furnace/Single‐Chamber Furnace

6.2.4.3 Tunnel Kiln

6.2.4.4 Other Furnaces

6.2.5. Graphitization

6.2.5.1 Acheson Furnace

6.2.5.2 Castner Furnace

6.2.5.3 Induction Furnace

6.2.5.4 Radiation Heating

6.2.6. Purification

6.2.7. Machining

6.2.8. Impregnation and Surface Coating

References

Note

6.3 Environmental, Health and Safety Aspects of the Production of Carbon and Graphite*

6.3.1 Environmental Aspects. 6.3.1.1 Raw Materials

6.3.1.2 Processes and Energy

6.3.2. Occupational Safety and Health Aspects. 6.3.2.1 Coal Tar Pitch

6.3.2.2 Risk Strategy for Benzopyrene

6.3.2.3 Gases

6.3.2.4 Electric Current

6.3.2.5 Dust

6.3.3. Process Safety

References

Note

6.4 Properties of Polygranular Carbon and Graphite Materials*

6.4.1. Physical Properties

6.4.2. Chemical Properties

References

Further Reading

Note

6.5 Applications

6.5.1 Prebaked Anodes for Aluminum Electrolysis

6.5.1.1. Introduction

6.5.1.2. The Electrolysis Cell

6.5.1.3. The Role of Anodes in the Pots. 6.5.1.3.1 Current Conductor Aspects

6.5.1.3.2 Thermal Aspects

6.5.1.3.3 Anode Failure and Consumption Mechanisms

6.5.1.3.4 Carbon Consumption Figures

6.5.1.4. The Cost of Al Production Related to the Anodes

6.5.1.5. The Anode Manufacture for Large Modern Smelters

6.5.1.6. The Raw Materials

6.5.1.7. The Green Mill. 6.5.1.7.1 Dry Aggregate Preparation

6.5.1.7.2 Paste and Green Block Production

6.5.1.7.3 The Baking Furnace

6.5.1.7.4 Anode Slotting

6.5.1.7.5 Anode Rodding

6.5.1.7.6 Anode Quality Control

6.5.1.8. Outlook

References

6.5.2 Cathodes for Aluminum Electrolysis

6.5.2.1. Cathodes in the Aluminum Smelting Process

6.5.2.2. Cathode Classification

6.5.2.3. Cathode Lifetime

6.5.2.4. Wettable Cathodes

6.5.2.5. Surface‐Profiled Cathodes

6.5.2.6. Spent Potlining

References

Further Reading

6.5.3 Graphite Electrodes for Electric Arc Furnaces

6.5.3.1 Graphite Electrodes for Electric Arc Furnaces

6.5.3.1.1 Steel Production

6.5.3.1.1.1 The Era of Iron and Steel

6.5.3.1.1.2 Steel Recycling in an Electric Arc Furnace

6.5.3.1.1.3 Steel Market Outlook

6.5.3.1.2 Graphite Electrodes in the Steel Recycling Process

6.5.3.1.2.1 Application Requirements

6.5.3.1.2.2 Wear Mechanisms

6.5.3.1.2.3 Future Developments

6.5.3.1.2.4 Graphite Electrode Market Outlook

References

6.5.4 Linings and Casting*

References

Further Reading

Notes

6.5.5 Carbon Electrodes*

6.5.5.1 Introduction

6.5.5.1.1 Raw Materials

6.5.5.1.2 Manufacturing

6.5.5.1.3 Typical Properties

6.5.5.1.4 Dimensions

6.5.5.1.5 Joint Systems

6.5.5.1.6 Carbon Electrode Market

Reference

Note

6.5.6 Self-Baking Electrodes

6.5.6.1 Raw Materials

6.5.6.2 Manufacturing

6.5.6.3 Properties

6.5.6.4 Operation Mode

6.5.6.4.1 The Process of Self-Baking Electrodes

References

6.5.7 Graphite Process Equipment

6.5.7.1 Heat Exchangers

6.5.7.2 Absorbers, Desorbers, and Distillation Columns

6.5.7.3 Hydrochloric Acid and Gas Synthesis Units

6.5.7.4 Reactors

6.5.7.5 Pumps

6.5.8 Fine-Grained Graphite

6.5.8.1 Markets and Applications

6.5.8.2 Applications in the Electronic Industry

6.5.8.3 Applications in the Metallurgy

6.5.8.4 Applications in the Ceramics

6.5.8.5 Applications in the Glass and Quartz-Glass Production

6.5.8.6 Applications for Current Transmission. 6.5.8.6.1 Carbon Brushes

6.5.8.6.2 Current Collectors

6.5.8.7 Applications in the Analytical Technology

6.5.9 Synthetic Graphite in Nuclear Applications

6.5.9.1 Early Graphites in Nuclear Reactor Technology

6.5.9.2 Requirements for Nuclear Graphite

6.5.9.3 Radiation Damage in Nuclear Graphite. 6.5.9.3.1 Structure of Polycrystalline Graphite

6.5.9.3.2 Basic Effects of Radiation on the Graphite Lattice Structure

6.5.9.3.3 Graphite Property Changes Due to Fast Neutron Irradiation

6.5.9.3.3.1 Dimensional Changes

6.5.9.3.3.2 Thermal Expansion Coefficient (CTE)

6.5.9.3.3.3 Thermal Conductivity and Resistivity

6.5.9.3.3.4 Young’s Modulus

6.5.9.3.3.5 Tensile Strength

6.5.9.3.3.6 Irradiation-Induced Creep

6.5.9.4 Decommissioning

6.5.9.5 Outlook

References

6.5.10 Expanded Graphite and Graphite Foils*

6.5.10.1 Production

6.5.10.2 Properties

6.5.10.3 Applications. 6.5.10.3.1 Sealing Applications

6.5.10.3.2 Conductive Fillers

6.5.10.3.3 Latent Heat Storage

6.5.10.3.4 Other Applications

6.5.10.4 Economic Aspects

References

Further Reading

Note

6.5.11 Other Classes of Carbon*

6.5.11.1 Glass-Like Carbon

6.5.11.2 Pyrocarbon and Pyrographite

6.5.11.3 Graphite Compounds. 6.5.11.3.1 Surface Complexes

6.5.11.3.2 Graphite Intercalation Compounds

References

Further Reading

Notes

7 Carbon and Graphite for Electrochemical Power Sources*

7.1 Introduction

7.2 Primary Batteries

7.3 Lead Acid Batteries

7.4 Li-Ion Batteries. 7.4.1 Introduction

7.4.2 Active Materials: General Concepts

7.4.2.1 Types of Carbon and Graphite Materials

7.4.2.2 Mechanism of Charge Storage in Graphitic Materials

7.4.2.3 Graphitization Degree and Reversible Capacity

7.4.2.4 The Solid Electrolyte Interphase

7.4.2.5 Solvent Co-intercalation and Graphite Exfoliation

7.4.2.6 Further Material Design Aspects

7.4.2.7 Mechanism of Charge Storage in Amorphous Carbons

7.4.3 Commercialized Active Materials

7.4.3.1 Amorphous Carbons (Hard and Soft Carbons)

7.4.3.2 Graphitized Mesophase Carbon Materials

7.4.3.3 Natural Graphite

7.4.3.4 Synthetic Graphite

7.4.3.5 Carbon/Graphite-Silicon and Composites

7.4.3.6 Other Anode Materials

7.4.4 Conductive Additives

7.4.5 Carbon Coatings

7.5 “Beyond Li-Ion” Battery Chemistries

7.5.1 Na-Ion Battery

7.5.2 Li-Sulfur Battery

7.5.3 Li-Oxygen/Air Battery

7.6 Electrochemical Double-Layer Capacitors. 7.6.1 Introduction

7.6.2 Effect of Porosity on Capacitance

7.6.3 Carbon-Based Electrode Materials

7.6.3.1 Activated Carbons

7.6.3.2 Other Carbon Materials

7.7 Redox Flow Batteries. 7.7.1 Introduction

7.7.2 Bipolar Plates

7.7.3 Electrode Materials. 7.7.3.1 Carbon Felts

7.7.3.2 Reticulated Vitreous Carbon

7.7.3.3 Other Electrode Concepts

7.7.3.4 Relevance of Carbon Materials

7.8 Fuel Cells. 7.8.1 Introduction

7.8.2 Bipolar Plates

7.8.2.1 Manufacturing

7.8.2.2 Properties

7.8.3 Gas Diffusion Layers and Electrodes

7.8.3.1 Gas Diffusion Layer Substrates

7.8.3.2 Microporous Layers

7.8.3.3 Gas Diffusion Electrodes and Catalyst Layers

References

Further Reading

Note

8 Carbon and Graphite for Catalysis

8.1 Physical and Chemical Properties of Carbon and Graphite

8.1.1 Surface Area

8.1.2 π Electron System

8.1.3 Defect

8.1.4 Surface Oxygenated Groups

8.1.5 Heteroatoms

8.2 Carbon as Catalyst Support

8.2.1 Preparation Methods

8.2.1.1 Impregnation

8.2.1.2 Adsorption

8.2.1.3 Deposition Precipitation

8.2.1.4 Colloidal

8.2.2 Catalytic Reaction

8.2.2.1 Surface Functional Groups and Pore Structure

8.2.2.2 Unique π Electron System

8.2.2.3 High Acid/Base and Hydrothermal Stability

8.3 Carbon as Active Phase. 8.3.1 Typical Carbon-Catalyzed Reaction Systems

8.3.2 Dehydrogenation Reactions on Nanocarbon. 8.3.2.1 Direct Dehydrogenation

8.3.2.2 Oxidative Dehydrogenation

8.3.2.3 Active Sites for ODH Reactions

8.3.2.4 Reaction Mechanism for ODH Reactions

8.3.2.5 Selectivity in Carbon-Catalyzed ODH Reactions

8.3.3 Selective Oxidation Reactions on Nanocarbon

8.3.4 Hydrohalogenation Reactions on Nanocarbon

8.3.5 Liquid-Phase Catalytic Reactions on Nanocarbon

8.3.6 Summary and Outlook

References

9 Activated Carbon*

9.1 General Aspects. 9.1.1 Definition

9.1.2 History

9.2 Carbonaceous Adsorbents. 9.2.1 Types of Carbonaceous Adsorbents

9.2.1.1 Activated Carbon

9.2.1.2 Activated Coke

9.2.1.3 Carbon Molecular Sieves

9.2.2 Chemical Properties

9.2.3 Mechanical Properties

9.2.4 Adsorption Properties

9.2.5 Quality Control

9.2.5.1 Physical and Mechanical Tests

9.2.5.2 Chemical and Physicochemical Tests

9.2.5.3 Adsorption Measurements

9.3 Production. 9.3.1 General Aspects

9.3.2 Raw Materials

9.3.3 Activating Furnaces. 9.3.3.1 Shaft Furnaces

9.3.3.2 Rotary Kilns

9.3.3.3 Multiple-Hearth Furnaces

9.3.3.4 Fluidized-Bed Furnaces

9.3.4 Methods of Activation. 9.3.4.1 Chemical Activation

9.3.4.2 Gas Activation

9.3.5 Granular and Pelletized Carbons

9.3.6 Carbon Molecular Sieves

9.3.7 Further Treatment

9.3.8 Impregnation

9.4 Applications

9.4.1 Gas-Phase Applications

9.4.1.1 Solvent Recovery

9.4.1.2 Process Gas and Air Purification

9.4.1.3 Gas Separation

9.4.1.4 Gasoline Vapor Adsorption

9.4.1.5 Flue Gas Cleaning

9.4.2 Liquid-Phase Applications

9.4.2.1 Water Treatment

9.4.2.2 Miscellaneous Liquid-Phase Applications

9.4.3 Impregnated Activated Carbon

9.4.4 Catalysts and Catalyst Supports

9.5 Regeneration and Reactivation

9.6 Economic Aspects

References

Further Reading

Note

10 Carbon Black

10.1 Carbon Black in General

10.2 Physical Properties. 10.2.1 Morphology

10.2.1.1 Morphology of Primary Particles and Aggregates

10.2.1.2 Microstructure of Carbon Black

10.2.1.3 Microstructure of Inversion Blacks

10.2.1.4 Size and Size Distribution of Primary Particles

10.2.1.5 Specific Surface Area

10.2.1.6 Non-spheroidal Primary Particles

10.2.1.7 Carbon Black Aggregates

10.2.2 Adsorption Properties

10.2.3 Density

10.2.4 Electrical Conductivity

10.2.5 Light Absorption

10.2.5.1 Blackness Value MY and MC

10.3 Chemical Properties. 10.3.1 Chemical Composition and Surface Chemistry

10.3.2 Oxidation Behavior

10.3.3 Inorganic Trace Compounds

10.4 Raw Materials

10.5 Production Processes

10.5.1 Furnace Black Process

10.5.2 Gas Black Process

10.5.3 Lampblack Process

10.5.4 Thermal Black Process

10.5.5 Acetylene Black Process

10.5.6 Other Manufacturing Processes

10.6 Oxidative Aftertreatment of Carbon Black

10.7 Environmental Aspects

10.8 Testing and Analysis

10.8.1 Electron Microscopy

10.8.1.1 Determination of the Particle Size

10.8.1.2 Determination of the Electron Microscopic Surface Area

10.8.2 Sorption Analysis. 10.8.2.1 Specific Surface Area Determined by Adsorption Methods

10.8.2.2 Nitrogen Surface Area (BET Surface Area and STSA)

10.8.2.3 Iodine Adsorption Number

10.8.2.4 CTAB Surface Area

10.8.3 Determination of Carbon Black Aggregates

10.8.3.1 Aggregate Size Determination by the DCP Method

10.8.3.2 Aggregate Size Determination by the PCS Method

10.8.3.3 Dibutyl Phthalate Absorption and Oil Absorption Number

10.8.3.4 Void Volume

10.8.4 Special Analytical Test Methods

10.8.5 Application Tests

10.9 Storage and Transportation

10.10 Uses. 10.10.1 Fields of Application/Consumption

10.10.1.1 Rubber Reinforcement

10.10.1.2 Non-rubber Applications

10.11 Economic Aspects

10.12 Toxicology and Occupational Health. 10.12.1 Carbon Black vs. Soot

10.12.2 Toxicology and Epidemiology

10.12.3 Occupation Exposure Limits

10.12.4 Food Contact Regulations

Acknowledgment

References

Further Reading

11 Carbon Fibers

11.1 Introduction

11.1.1 History

11.1.2 Fundamentals

11.1.3 Nomenclature

11.2 Raw Materials (Precursor Fibers)

11.3 Production. 11.3.1 Carbon Fiber Production Process (Rayon Based)

11.3.2 Carbon Fiber Production Process (Pitch Based)

11.3.3 Carbon Fiber Production Process (PAN Based)

11.3.3.1 Polyacrylonitrile Polymer and Fiber

11.3.3.2 Stabilization of PAN Fiber

11.3.3.3 Carbonization of Stabilized PAN Fibers

11.3.3.4 Graphitization of PAN-Based Carbon Fibers

11.3.4 Chemical Composition

11.4 Properties

11.4.1 Mechanical Properties

11.4.2 Structure

11.4.3 Physical and Chemical Properties

11.5 Uses

11.5.1 Stabilized PAN Fiber for Textile Applications

11.5.2 Carbonized Fibers for Electrical Conductivity and Reinforcement Applications

11.5.2.1 Automotive Industry

11.5.2.2 Wind Energy

11.5.2.3 Aerospace

11.5.2.4 Sports Industry

11.5.2.5 Mechanical Engineering

11.5.2.6 Civil Engineering

11.6 Economic Aspects

11.6.1 Recycling (Secondary Carbon Fibers)

11.6.2 Life Cycle Assessment

References

12.1 Carbon Fiber Reinforced Polymers*

12.1.1 Raw Materials. 12.1.1.1 Carbon Fibers

12.1.1.2 Matrix Resins

12.1.2 Manufacturing Technologies. 12.1.2.1 Thermoset Matrix Systems

12.1.2.2 Thermoplastic Matrix Systems

12.1.3 Design and Simulation

12.1.4 Mechanical Properties

12.1.5 Applications. 12.1.5.1 Aerospace Applications

12.1.5.2 Automotive Applications

12.1.5.3 Wind-Energy Facilities

12.1.5.4 Offshore Applications

12.1.5.5 Sporting Goods

12.1.5.6 Boat and Ship Building

12.1.5.7 Industrial Applications

12.1.5.8 Medical Applications

12.1.5.9 Building Applications

12.1.6 Economic Aspects

References

Note

12.2 Carbon Fiber Reinforced Carbon*

12.2.1 Introduction

12.2.1.1 History

12.2.1.2 Definition and Nomenclature

12.2.2 Raw Materials

12.2.2.1 Carbon Fibers and Textile Fiber Precursors

12.2.2.1.1 PAN Fibers

12.2.2.1.2 Rayon Fibers

12.2.2.1.3 Pitch Fibers

12.2.2.2 Matrix Resins

12.2.2.3 Additives

12.2.2.4 Pitch

12.2.2.5 Pyrocarbon

12.2.3 Manufacturing Processes

12.2.3.1 Pressing and Manual Layup

12.2.3.2 Winding

12.2.3.3 Autoclave Technology

12.2.3.4 Joining

12.2.3.5 Densification

12.2.3.5.1 Liquid Impregnation

12.2.3.5.2 Gas-Phase Deposition (CVI, CVD)

12.2.3.6 Graphitization

12.2.4 Structure and Properties

12.2.4.1 Fiber–Matrix Bonding, Structure, and Crack Structure

12.2.4.2 Material Properties

12.2.4.2.1 Mechanical Properties

12.2.4.2.2 Thermophysical Properties

12.2.4.2.3 Tribological Properties

12.2.4.3 Chemical Properties

12.2.4.3.1 Chemical Corrosion

12.2.4.3.2 Oxidation and Oxidation Protection

12.2.5 Component Design and Numerical Methods

12.2.5.1 Problems Specific to CFRC

12.2.5.2 Characteristic Material Parameters

12.2.5.3 Design Procedure

12.2.5.4 Experimental Studies and Component Tests

12.2.6 Applications

12.2.7 Outlook

References

Note

12.3 Carbon Fiber Reinforced Ceramic Composites

12.3.1 Introduction

12.3.2 Manufacturing Methods

12.3.2.1 Chemical Vapor Infiltration (CVI)

12.3.2.2 Polymer Infiltration and Pyrolysis (PIP)

12.3.2.3 Melt Infiltration (MI)

12.3.2.4 Manufacture of CFRP Preforms

12.3.2.5 Pyrolysis of CFRP Preforms

12.3.2.6 Siliconization

12.3.2.7 Serial Manufacture of MI-Based C/SiC Brake Disks for Automobiles

12.3.3 Properties. 12.3.3.1 General Properties

12.3.3.2 Material Composition and Microstructure

12.3.3.3 Mechanical Properties

12.3.3.4 Thermal Properties

12.3.3.5 Oxidation and Corrosion

12.3.3.6 Tribological Properties

12.3.4 Applications

12.3.4.1 Space Applications

12.3.4.2 Thermal Protection Systems (TPS)

12.3.4.3 Space Propulsion

12.3.4.4 Satellite Structures

12.3.4.5 Applications for Aeronautics

12.3.4.6 Applications for Friction Systems

Acknowledgments

Abbreviations

References

13 Nanocarbons

13.1 Introduction

13.2 Definition of Nanocarbons

13.2.1 The Two-Dimensional Allotrope of Carbon: Graphene

13.2.2 Physical Properties of Graphene

13.2.3 The Preparation of Graphene

13.2.4 Applications of Graphene

13.2.5 Transparent Conducting Films Using Graphene

13.2.6 Graphene as Composite Filler

13.2.7 Using Graphene as a Substrate

13.3 One-Dimensional Fibrous Nanocarbons

13.3.1 Carbon Nanotubes

13.3.2 Carbon Nanotube Structure and Electronic Properties

13.3.3 The Preparation of Carbon Nanotubes

13.3.4 Physical Properties and Applications of Single- and Double-Walled Carbon Nanotubes

13.3.4.1 Bulk Conductivity of SWNTs and DWNTs

13.3.4.2 SWNT and DWNT as Porous Material

13.3.4.3 SWNTs and DWNTs as Nano-templates

13.3.4.4 DWNTs as Superconducting Nanowires

13.3.4.5 Structural Engineering of CNT

13.3.4.6 Highly Functional Composite Materials Using DWNTs

13.3.5 Multi-walled Carbon Nanotubes

13.3.5.1 MWNTs as the Universal Composite Filler

13.3.5.2 Functionalization with Coatings Using Solubilized MWNTs

13.3.5.3 MWNT Composite Paint for Corrosion Protection

13.3.5.4 MWNT Composite for Sports Products

13.3.5.5 MWNT as an Additive in Lithium-Ion Rechargeable Batteries

13.3.5.6 MWNT as a Hybrid Absorbent

13.4 Other Types of Carbon Nanotubes

13.4.1 Structure, Physical Properties, and Applications for Cup-Stacked Carbon Nanotube

13.4.1.1 Supporting Metal Particle at the CSCNT Edges

13.4.1.2 Electrochemical Reaction Derived from the CSCNT Edge

13.4.1.3 The Peculiar Electrical Conductivity at the CSCNT Edge

13.5 Carbyne

13.6 Graphene Nanoribbons

13.7 The Preparation of Graphene Nanoribbons

13.7.1 Applications of Graphene Nanoribbons

13.8 Zero-Dimensional Nanocarbons: Fullerenes

13.9 Safety and Toxicity of Carbon Nanotubes: “Design of Safe Nanomaterials”

13.10 Conclusions and Future Challenges

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Raw Materials, Production and Applications

Edited by

.....

See: CARBON, GRAPHITE.

There is also the hexagonal diamond‐like structure of the element CARBON (Lonsdaleite).

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Industrial Carbon and Graphite Materials
Подняться наверх