Soil Bioremediation

Soil Bioremediation
Автор книги: id книги: 2029609     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 20872,4 руб.     (231,43$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Биология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119547938 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book will discuss the effective and sustainable technological approaches for remediation of contaminates via eco-friendly usage of microbes. The primary focus will be on the role of microbes, particularly bacteria and fungi, for the degradation and removal of various xenobiotic substances in the environment. <br />The book will also emphasize molecular approaches and biosynthetic pathways of microbes, and present gene and protein expression studies for bio-deterioration techniques. New innovative and sophisticated green technologies for waste minimization and waste control will be presented, as well as the potential of microbes for various techniques of bioremediation, including bio-sorption, bio-augmentation, bio-stimulation, to clean contaminated environments.

Оглавление

Группа авторов. Soil Bioremediation

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Soil Bioremediation. An Approach Towards Sustainable Technology

List of Contributors

Preface

1 In‐situ Bioremediation: An Eco‐sustainable Approach for the Decontamination of Polluted Sites

1.1 Introduction

1.2 Ex‐situ Versus In‐situ Bioremediation

1.3 In‐situ Bioremediation Techniques. 1.3.1 Bioaugmentation

1.3.2 Biostimulation

1.3.3 Bioaugmentation Versus Biostimulation

1.4 Conclusion

References

2 Bioremediation: A Green Solution to avoid Pollution of the Environment

2.1 Introduction

2.2 Sources of Heavy Metals

2.2.1 Natural Sources

2.2.2 Anthropogenic Sources

2.3 Impacts of Heavy Metals on Soil and Microbial Activity. 2.3.1 Soil Microbial Community

2.3.2 Soil Organic Matter

2.3.3 Plants

2.3.4 Water

2.3.5 Humans

2.4 Fate of Pesticides and Its Biodegradation in Soil

2.5 Strategies of Bioremediation

2.5.1 Microbial Remediation

2.5.2 Phytovolatilization

2.5.3 Phytodegradation

2.6 Adaptive Mechanism of Bioremediation for Heavy Metals, Pesticides, and Herbicides

2.6.1 Defense System

2.6.1.1 Adsorption

2.6.1.2 Photodegradation

2.6.1.3 Hydrolysis

2.6.1.3.1 Enzymatic Degradation

2.7 Behavior of Inorganic and Organic Pollutants in Soil

2.8 Environmental Implications of Bioremediation

2.8.1 Advantages of Phytoremediation

2.8.2 Disadvantages of Phytoremediation

2.9 Conclusion

References

3 Laccase: The Blue Copper Oxidase

3.1 What Is Laccase?

3.2 Distribution of Laccases

3.3 Application of Laccase

3.3.1 Laccase in Bioremediation

3.3.1.1 Degradation of Xenobiotics

3.3.1.2 Decolorization of Dyes

3.3.2 Effluent Treatment

3.3.3 Pulp and Paper Industry

3.3.4 Laccases: Biosensors and Biofuel Cells

3.3.5 Laccase in Food Industries. 3.3.5.1 Wine Stabilization

3.3.5.2 Baking Industry

3.4 Conclusion

References

4 Genome Assessment: Functional Gene Identification Involved in Heavy Metal Tolerance and Detoxification

4.1 Introduction

4.2 Tolerance and Degradation Mechanisms of Toxic Metals by Microorganisms. 4.2.1 Cadmium (Cd)

4.2.2 Chromium (Cr)

4.2.3 Lead (Pb)

4.2.4 Zinc (Zn)

4.2.5 Nickel (Ni)

4.2.6 Copper (Cu)

4.2.7 Aluminum (Al)

4.2.8 Arsenic (As)

4.2.9 Mercury (Hg)

4.3 Genetic Engineering in Bioremediation Processes for Some Major Elements

4.4 Biotechnological Intervention for Some Important Heavy Metals

4.5 Future Perspective

4.6 Conclusions

References

5 Bioremediation of Heavy Metal Ions Contaminated Soil

5.1 Introduction

5.2 Bioremediation

5.2.1 Metals Transport

5.2.2 Extracellular Sequestration

5.2.3 Intracellular Sequestration

5.2.4 Biotransformation

5.2.5 Limits and Prospects

5.3 Phytoremediation

5.3.1 Mechanism

5.3.2 Obstacles and Prospects

5.4 Analytical Methods in Bioremediation of Metals

5.4.1 Combination of Analytical Methods for the Determination of Heavy Metal Concentrations

5.5 Conclusion

References

6 Bioremediation of Dye Contaminated Soil

6.1 Introduction

6.2 History and Usage of Dyes

6.3 Classification of Dyes

6.3.1 Acid Dyes

6.3.2 Basic or Cationic Dyes

6.3.3 Direct Dyes

6.3.4 Reactive Dyes

6.3.5 Disperse Dyes

6.4 Problems Due to Colored Textile Effluent

6.5 Physico‐Chemical Quality of Textile Effluents

6.6 Dye Decolorization/Degradation Techniques

6.6.1 Physical Methods. 6.6.1.1 Membrane Filtration

6.6.1.2 Electrokinetic Coagulation or Flocculation

6.6.1.3 Sorption

6.6.1.4 Activated Carbon

6.6.1.5 Peat

6.6.1.6 Wood Chips

6.6.1.7 Fly Ash and Coal Mixture

6.6.1.8 Silica Gel

6.6.1.9 Other Materials

6.6.1.10 Ion Exchange

6.6.2 Chemical Methods. 6.6.2.1 Electrolysis

6.6.2.2 H2O2‐Fe(II) Salts (Fenton's Reagent)

6.6.2.3 Photocatalytic Process

6.6.2.4 Ozonation

6.6.2.5 Sodium Hypochloride (NaOCl)

6.6.3 Microbial Degradation of Dyes

6.6.3.1 Bacteria

6.6.3.2 Actinomycetes

6.6.3.3 Fungi

6.6.3.4 Algae

6.6.3.5 Dye Decolorization Enzymes

6.6.3.6 Use of Dead Biomass in Decolorization

6.7 Factors that Control the Discoloration of Microbial Dye

6.7.1 Effects of the Azo Dye Structure

6.7.2 Influence of Carbon and Nitrogen Sources

6.7.3 Influence of Salinity, Color Concentration, pH, Temperature, and Oxygen

6.8 Conclusions

References

7 Composting and Bioremediation Potential of Thermophiles

7.1 Introduction

7.2 Heavy Metal Resistance Genes

7.2.1 Cadmium‐Resistant Genes (cad and czc)

7.2.2 Chromium Resistance Gene (chr A)

7.2.3 Arsenite Resistance (ars) Operon

7.2.4 Arsenite Respiratory Reductase

7.3 Biotransformation‐Based Bioremediation. 7.3.1 Oxidation‐Based Metal Transformation

7.3.1.1 Arsenite [As(III)] Oxidation

7.3.1.2 Iron [Fe(II)] Oxidation

7.3.2 Reduction‐based Metal Transformations

7.3.2.1 Chromium Reduction [Cr(VI) → Cr(III)]

7.3.2.2 Mercury Reduction [Hg(II) → Hg(0)]

7.3.2.3 Selenium Reduction [Se(IV)/Se(VI) → Se(0)]

7.3.2.4 Uranium Reduction [U(VI) → U(IV)]

7.3.2.5 Iron Reduction [Fe(III) → Fe(II)]

7.3.3 Biosorption‐Based Bioremediation

7.3.4 Metallothioneins, Metallochaperones, and Other Metal‐Binding Proteins

7.3.5 Metal Efflux System‐Based Bioremediation

7.4 Future Perspectives

Acknowledgments

References

8 Ecological Perspectives of Halophilic Fungi and their Role in Bioremediation

8.1 Introduction

8.2 Hypersaline Inhabitant Fungi

8.3 Strategies Against the Hypersaline Environment. 8.3.1 Ion Homeostasis

8.3.2 Accumulation of Compatible Solutes

8.3.3 Maintaining Plasma Membrane Fluidity

8.3.4 High Osmolarity Glycerol (HOG) Signaling Pathway

8.4 Ecological Perspectives of Hypersaline Fungi

8.5 Conclusions

References

9 Rhizobacteria‐Mediated Bioremediation: Insights and Future Perspectives

9.1 Introduction

9.2 Bioremediation: Rescue Plan by Natural Agents

9.3 Rhizoremediation

9.4 Rhizospheric Microbial Community. 9.4.1 Endophytes

9.4.2 Plant Growth Promoting Rhizobacteria

9.4.3 Mycorrhizal Association

9.5 Practices that Improves Rhizoremediation. 9.5.1 Phytoextraction

9.5.2 Genetically Engineered Rhizobacteria

9.6 Future Perspective

9.7 Advantages of Rhizoremediation

9.8 Conclusion

Acknowledgment

References

10 Bioremediation Potential of Rhizobacteria associated with Plants Under Abiotic Metal Stress

10.1 Introduction

10.2 Mode of Action Rhizobacteria. 10.2.1 Role of PGPR in Plant Growth Under Abiotic Stress

10.2.2 Mechanism Action of PGPR Species

10.3 Bioremediation

10.4 Genetically Modified Plant‐Associated Microbes for Heavy Metal Stress Tolerance

10.5 Highly Toxic Metals

10.6 Effects of Highly Toxic Metals on Plant Growth

10.6.1 Arsenic (33As74.922)

10.6.2 Lead (82Pb207.2)

10.6.3 Cadmium(48Cd112.41)

10.6.4 Chromium (24Cr51.9961)

10.6.5 Cobalt (27As58.933)

10.6.6 Copper (29Cu63.546)

10.6.7 Gold (79Au196.97)

10.6.8 Iron (26Fe55.845)

10.6.9 Manganese (25Mn54.938)

10.6.10 Molybdenum (42Mo95.94)

10.6.11 Mercury (80Hg200.59)

10.6.12 Nickel (28Ni58.693)

10.6.13 Selenium (34Se78.96)

10.6.14 Silver (47Ag107.87)

10.6.15 Uranium (92U238.03)

10.6.16 Zinc (30Zn65.38)

10.7 Conclusion

References

11 Molecular and Enzymatic Mechanism Pathways of Degradation of Pesticides Pollutants

11.1 Introduction

11.2 Effect of Pesticides on Soil Enzymes

11.3 Introduction of Plasmids in Soil Bacteria

11.4 Microbial Degradation of Pesticides

11.5 Enzymatic Degradation

11.6 Organophosphorus Hydrolase and Organophosphorus Dehydrogenase (OPH and OPD)

11.7 Pesticide–Antibiotic Cross Resistance

11.8 Conclusions

Acknowledgments

References

12 Bioremediation of Heavy Metals and Other Toxic Substances by Microorganisms

12.1 Introduction

12.2 Sources of Heavy Metals

12.2.1 Natural Sources

12.2.2 Anthropogenic Sources

12.2.3 Electronic Waste

12.3 Effects of Heavy Metals on Plant, Microorganisms, and Human Health

12.4 Current Approaches for Remediation of Heavy Metals

12.4.1 Physico‐chemical Approaches for Remediation of Heavy Metals

12.4.1.1 Soil Replacement

12.4.1.2 Soil Isolation and Containment

12.4.1.3 Solidification and Stabilization

12.4.1.4 Vitrification

12.4.1.5 Soil Washing

12.4.1.6 Electrokinetic Remediation

12.4.1.7 Immobilization Techniques

12.4.2 Biological Approaches/Bioremediation for Remediation of Heavy Metals

12.5 Mechanisms Involved in Bioremediation

12.5.1 Biosorption

12.5.2 Binding on a Surface

12.5.3 Entrapment

12.5.4 Encapsulation

12.6 Types of Bioremediation

12.6.1 In‐situ Bioremediation

12.6.2 Ex‐situ Bioremediation

12.7 Strategies of Bioremediation

12.7.1 Microbe‐Based Bioremediation

12.7.1.1 Use of Indigenous Microbes

12.7.1.2 Bioaugmentation

12.7.1.3 Biostimulation

12.7.1.4 Biotechnological Approaches Involving Genetically Modified Microorganisms

12.7.2 Plant Based Bioremediation/Phytoremediation

12.8 Factors Affecting Bioremediation

12.8.1 Environmental Factors

12.8.1.1 Atmospheric Temperature

12.8.1.2 Atmospheric Carbon Dioxide

12.8.2 Soil Factors

12.8.2.1 Physico‐chemical Parameters

12.8.2.2 Moisture

12.8.2.3 Aeration

12.8.2.4 Organic Matter

12.8.2.5 Nutrient Availability

12.8.3 Bioavailability of Contaminants

12.8.4 Characteristics of Contaminants

12.8.5 Biological Factors

12.9 Pros and Cons of Applicability of Bioremediation Approaches Under Field Conditions

12.10 Conclusion and Future Prospects

References

13 Trends in Heavy Metal Remediation: An Environmental Perspective

13.1 Introduction

13.2 Sources of Heavy Metals

13.2.1 Atmosphere to Soil

13.2.2 Sewage to Soil

13.2.3 Solid Wastes to Soils

13.2.4 Agriculture to Soils

13.3 Heavy Metal Impacts

13.3.1 Impact of Heavy Metals on Humans

13.3.2 Risk of Emergence of Developing Antibiotic Resistance Strains Due to Heavy Metals

13.3.3 Impact of Heavy Metals on Soil and Soil Microbes

13.3.4 Impacts of Heavy Metals on Plants

13.4 Current Scenario of Heavy Metals

13.5 Microorganisms and Remediation of Heavy Metals

13.5.1 Microbial Processes Concerned with Bioremediation

13.5.2 Metal Microbe Interaction

13.6 Mechanism of Metal Tolerance by Resistant Species

13.6.1 General Mechanism of Metal Resistance

13.6.2 Exopolymer Binding

13.6.3 Siderophore Complexation

13.6.4 Biosurfactants Complexation

13.6.5 Precipitation by Metal Reduction

13.6.6 Efflux System

13.6.7 Metal Dependent Mechanisms of Metal Resistance

13.7 Conclusion

References

Index. a

b

c

d

e

f

g

h

I

l

m

n

o

p

r

s

t

v

x

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Dr. Javid A. Parray

.....

Ajay Kumar Manna Department of Chemical Engineering National Institute of Technology Agartala Tripura India

Mohammad Yaseen Mir Centre of Research for Development Department of Environmental Sciences University of Kashmir Srinagar Jammu and Kashmir India

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Soil Bioremediation
Подняться наверх