Autonomous Airborne Wireless Networks

Autonomous Airborne Wireless Networks
Автор книги: id книги: 2117245     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15494,9 руб.     (168,4$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119751700 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Discover what lies beyond the bleeding-edge of autonomous airborne networks with this authoritative new resource   Autonomous Airborne Wireless Networks  delivers an insightful exploration of recent advances in the theory and practice of using airborne wireless networks to provide emergency communications, coverage and capacity expansion, information dissemination, and more. The distinguished engineers and editors have selected resources that cover the fundamentals of airborne networks, including channel models, recent regulation developments, self-organized networking, AI-enabled flying networks, and notable applications in a variety of industries.  The book evaluates advances in the cutting-edge of unmanned aerial vehicle wireless network technology while offering readers new ideas on how airborne wireless networks can support various applications expected of future networks. The rapidly developing field is examined from a fresh perspective, one not just concerned with ideas of control, trajectory optimization, and navigation.  Autonomous Airborne Wireless Networks  considers several potential use cases for the technology and demonstrates how it can be integrated with concepts from self-organized network technology and artificial intelligence to deliver results in those cases. Readers will also enjoy:  A thorough discussion of distributed drone base station positioning for emergency cellular networks using reinforcement learning (AI-enabled trajectory optimization) An exploration of unmanned aerial vehicle-to-wearables (UAV2W) indoor radio propagation channel measurements and modelling An up-to-date treatment of energy minimization in UAV trajectory design for delay tolerant emergency communication Examinations of cache-enabled UAVs, 3D MIMO for airborne networks, and airborne networks for Internet of Things communications Perfect for telecom engineers and industry professionals working on identifying practical and efficient concepts tailored to overcome challenges facing unmanned aerial vehicles providing wireless communications,  Autonomous Airborne Wireless Networks  also has a place on the bookshelves of stakeholders, regulators, and research agencies working on the latest developments in UAV communications.

Оглавление

Группа авторов. Autonomous Airborne Wireless Networks

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Autonomous Airborne Wireless Networks

Editor Biographies

List of Contributors

1 Introduction

2 Channel Model for Airborne Networks

2.1 Introduction

2.2 UAV Classification

2.3 UAV‐Enabled Wireless Communication

2.4 Channel Modeling in UAV Communications

2.4.1 Background

2.4.1.1 Path Loss and Large‐Scale Fading

2.4.1.2 Small‐Scale Fading

2.4.1.3 Airframe Shadowing

2.5 Key Research Challenges of UAV‐Enabled Wireless Network

2.5.1 Optimal Deployment of UAVs

2.5.2 UAV Trajectory Optimization

2.5.3 Energy Efficiency and Resource Management

2.6 Conclusion

Bibliography

3 Ultra‐wideband Channel Measurements and Modeling for Unmanned Aerial Vehicle‐to‐Wearables (UAV2W) Systems

3.1 Introduction

3.2 Measurement Settings

3.3 UWB‐UAV2W Radio Channel Characterization

3.3.1 Path Loss Analysis

3.3.2 Time Dispersion Analysis

3.3.3 Path Loss Analysis for Different Postures

3.3.4 Time Dispersion Analysis for Different Postures

3.4 Statistical Analysis

3.5 Conclusion

Bibliography

Notes

4 A Cooperative Multiagent Approach for Optimal Drone Deployment Using Reinforcement Learning

4.1 Introduction

4.2 System Model

4.2.1 Urban Model

4.2.2 Communications Model

4.3 Reinforcement Learning Solution

4.3.1 Fully Cooperative Markov Games

4.3.2 Decentralized Q‐Learning

4.3.3 Selection of Actions

4.3.4 Metrics

4.4 Representative Simulation Results. 4.4.1 Simulation Scenarios

4.4.2 Environment

4.4.3 User Distribution

4.4.4 Simulation

4.4.5 Numerical Results. 4.4.5.1 Single Frequency

4.4.5.2 Three Frequencies

4.4.5.3 Six Frequencies

4.5 Conclusions and Future Work. 4.5.1 Conclusions

4.5.2 Future Work

Acknowledgments

Bibliography

5 SWIPT‐PS Enabled Cache‐Aided Self‐Energized UAV for Cooperative Communication

5.1 Introduction

5.2 System Model

5.2.1 Air‐to‐Ground Channel Model

5.2.2 Signal Structure

5.2.3 Caching Mechanism at the UAV

5.3 Optimization Problem Formulation

5.3.1 Maximization of the Achievable Information Rate at the User

5.3.2 Trajectory Optimization with Fixed Time and Energy Scheduling

5.4 Numerical Simulation Results

5.5 Conclusion

Acknowledgments

Appendix 5.A. Proof of Optimal Solutions Obtained in (P1)

Bibliography

Notes

6 Performance of mmWave UAV‐Assisted 5G Hybrid Heterogeneous Networks

6.1 The Significance of UAV Deployment

6.2 Contribution

6.3 The Potential of mmWave and THz Communication

6.4 Challenges and Applications

6.4.1 Challenges

6.4.1.1 Complex Hardware Design

6.4.1.2 Imperfection in Channel State Information

6.4.1.3 High Mobility

6.4.1.4 Beam Misalignment

6.4.2 Applications

6.5 Fronthaul Connectivity using UAVs

6.5.1 Distribution of SCBs

6.5.2 Placement of UAVs

6.6 Communication Model

6.6.1 Communication Constraints and Objective

6.7 Association of SCBs with UAVs

6.8 Results and Discussions

6.8.1 Analysis of Results

6.9 Conclusion

Bibliography

Notes

7 UAV‐Enabled Cooperative Jamming for Physical Layer Security in Cognitive Radio Network

7.1 Introduction

7.2 System Model

7.2.1 Signal Model

7.2.2 Optimization Problem Formulation

7.3 Proposed Algorithm

7.3.1 Tractable Formulation for the Optimization Problem

7.3.1.1 Tractable Formulation for

7.3.1.2 Tractable Formulation for

7.3.1.3 Tractable Formulation for Constraint (7.10i)

7.3.1.4 Safe Optimization Problem

7.3.2 Proposed IA‐Based Algorithm

7.4 Numerical Results

7.5 Conclusion

Bibliography

8 IRS‐Assisted Localization for Airborne Mobile Networks

8.1 Introduction

8.1.1 Related Work. 8.1.2 Unmanned Aerial Vehicles

8.1.3 Intelligent Reflecting Surface

8.2 Intelligent Reflecting Surfaces in Airborne Networks

8.2.1 Aerial Networks with Integrated IRS

8.2.1.1 Integration of IRS in High‐Altitude Platform Stations (HAPSs) for Remote Areas Support

8.2.1.2 Integration of IRS in UAVs for Terrestrial Networks Support

8.2.1.3 Integration of IRS with Tethered Balloons for Terrestrial/Aerial Users Support

8.2.2 IRS‐Assisted Aerial Networks

8.3 Localization Using IRS

8.3.1 IRS Localization with Single Small Cell (SSC)

8.3.1.1 IRS Localization Using RSS with an SSC

8.4 Research Challenges

8.4.1 Challenges in UAV‐Based Airborne Mobile Networks

8.4.2 Challenges in IRS‐Based Localization

8.5 Summary and Conclusion

Bibliography

9 Performance Analysis of UAV‐Enabled Disaster Recovery Networks

9.1 Introduction

9.2 UAV Networks

9.2.1 UAV System's Architecture

9.2.1.1 Single UAV Systems

9.2.1.2 Multi‐UAV Systems

9.2.1.3 Cooperative Multi‐UAVs

9.2.1.4 Multilayer UAV Networks

9.3 Benefits of UAV Networks

9.4 Design Consideration of UAV Networks

9.5 New Technology and Infrastructure Trends

9.5.1 Network Function Virtualization (NFV)

9.5.2 Software‐Defined Networks (SDNs)

9.5.3 Cloud Computing

9.5.4 Image Processing

9.5.5 Millimeter Wave Communication

9.5.6 Artificial Intelligence

9.5.7 Machine Learning

9.5.8 Optimization and Game Theory

9.6 Research Trends

9.7 Future Insights

9.8 Conclusion

Bibliography

10 Network‐Assisted Unmanned Aerial Vehicle Communication for Smart Monitoring of Lockdown

10.1 Introduction

10.1.1 Relevant Literature

10.2 UAVs as Aerial Base Stations

10.2.1 Simulation Setting

10.2.2 Optimal Number of ABSs for Cellular Coverage in a Geographical Area

10.2.3 Performance Evaluation

10.2.3.1 Variation of Number of ABSs with ABS Altitude

10.2.3.2 Variation of Number of ABS with ABS Transmission Power

10.2.3.3 Variation of Number of ABSs with Geographical Area

10.3 UAV as Relays for Terrestrial Communication

10.3.1 5G Air Interface

10.3.2 Simulation Setup

10.4 Conclusion

Bibliography

Note

11 Unmanned Aerial Vehicles for Agriculture: an Overview of IoT‐Based Scenarios

11.1 Introduction

11.2 The Perspective of Research Projects

11.3 IoT Scenarios in Agriculture

11.3.1 Use of Data and Data Ownership

11.4 Wireless Communication Protocols

11.5 Multi‐access Edge Computing and 5G Networks

11.6 Conclusion

Bibliography

Notes

12 Airborne Systems and Underwater Monitoring

12.1 Introduction

12.2 Automated Image Labeling

12.2.1 Point Selection

12.2.2 Measurement System

12.2.3 Region Labeling

12.2.4 Testing

12.2.4.1 Measurement System Testing

12.2.4.2 Point Selection Simulations

12.2.4.3 Field Experiments

12.3 Water/Land Visual Differentiation

12.3.1 Classifier Training

12.3.2 Online Algorithm

12.3.3 Mapping

12.3.4 Transmit

12.3.5 Field Experiments

12.3.5.1 Calibration

12.3.5.2 Simulation

12.3.5.3 Overall

12.4 Offline Bathymetric Mapping

12.4.1 Algorithm Overview

12.4.2 Algorithm Simulation

12.4.3 Algorithm Implementation

12.4.4 Bathymetric Measurement System

12.5 Online Bathymetric Mapping

12.5.1 Point Selection Algorithms

12.5.1.1 Monotone Chain Hull Algorithm

12.5.1.2 Incremental Hull Algorithm

12.5.1.3 Quick Hull Algorithm

12.5.1.4 Gift Wrap Algorithm

12.5.1.5 Slope‐Based Algorithm

12.5.1.6 Combination (Slope‐Based and Probability) Algorithm

12.5.2 Simulation Setup

12.5.3 Results and Analysis

12.5.3.1 Spline

12.5.3.2 IDW

12.5.3.3 Overall Summary

12.6 Conclusion and Future Work

Bibliography

13 Demystifying Futuristic Satellite Networks: Requirements, Security Threats, and Issues

13.1 Introduction

13.2 Inter‐Satellite and Deep Space Network

13.2.1 Tier‐1 of Satellite Networks

13.2.2 Tier‐2 of Satellite Networks

13.2.3 Tier‐3 of Satellite Networks

13.3 Security Requirements and Challenges in ISDSN

13.3.1 Security Challenges

13.3.1.1 Key Management

13.3.1.2 Secure Routing

13.3.2 Security Threats

13.3.2.1 Denial of Service Attack

13.3.2.2 Data Tampering

13.4 Conclusion

Bibliography

Notes

14 Conclusion

14.1 Future Hot Topics. 14.1.1 Terahertz Communications

14.1.2 3D MIMO for Airborne Networks

14.1.3 Cache‐Enabled Airborne Networks

14.1.4 Blockchain‐Enabled Airborne Wireless Networks

14.2 Concluding Remarks

Index

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Muhammad Ali Imran, Oluwakayode Onireti, Shuja Ansari, and Qammer H. Abbasi

.....

Institute of Information Science and Technologies (ISTI) and Institute of Science and Technologies for Energy and Sustainable Mobility, National Research Council (CNR)

Ruggeri Massimiliano

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Autonomous Airborne Wireless Networks
Подняться наверх