Polymer Composites for Electrical Engineering

Polymer Composites for Electrical Engineering
Автор книги: id книги: 2190359     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14645,2 руб.     (159,57$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119719656 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The book's relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.

Оглавление

Группа авторов. Polymer Composites for Electrical Engineering

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Polymer Composites for Electrical Engineering

List of Contributors

Preface

1 Polymer Composites for Electrical Energy Storage

1.1 Introduction

1.2 General Considerations

1.3 Effect of Nanofiller Dimension

1.4 Orientation of Nanofillers

1.5 Surface Modification of Nanofillers

1.6 Polymer Composites with Multiple Nanofillers

1.7 Multilayer‐structured Polymer Composites

1.8 Conclusion

References

2 Polymer Composites for Thermal Energy Storage

2.1 Introduction

2.2 Shape‐stabilized Polymeric Phase Change Composites

2.2.1 Micro/Nanoencapsulated Method

2.2.2 Physical Blending

2.2.3 Porous Supporting Scaffolds

2.2.4 Solid–Solid Composite PCMs

2.3 Thermally Conductive Polymeric Phase Change Composites

2.3.1 Metals

2.3.2 Carbon Materials

2.3.3 Ceramics

2.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites

2.4.1 Electro‐to‐Heat Conversion

2.4.2 Light‐to‐Heat Conversion

2.4.3 Magnetism‐to‐Heat Conversion

2.4.4 Heat‐to‐Electricity Conversion

2.5 Emerging Applications of Polymeric Phase Change Composites

2.5.1 Thermal Management of Electronics

2.5.2 Smart Textiles

2.5.3 Shape Memory Devices

2.6 Conclusions and Outlook

Acknowledgments

References

3 Polymer Composites for High‐Temperature Applications

3.1 Applications of Polymer Composite Materials in High‐Temperature Electrical Insulation

3.1.1 High‐Temperature‐Resistant Electrical Insulating Resin Matrix

3.1.1.1 Silicone Resins

3.1.1.2 Polyimide

3.1.1.3 Polyether Ether Ketone

3.1.1.4 Polybenzimidazole

3.1.1.5 Polyphenylquinoxaline

3.1.1.6 Benzoxazine

3.1.2 Modification of Resin Matrix with Reinforcements

3.1.2.1 Mica

3.1.2.2 Glass Fiber

3.1.2.3 Inorganic Nanoparticles

3.1.3 Modifications in the Thermal Conductivity of Resin Matrix

3.1.3.1 Mechanism of Thermal Conductivity

3.1.3.2 Intrinsic High Thermal Conductivity Insulating Material

3.1.3.3 Filled High Thermal Conductivity Insulating Material

3.2 High‐Temperature Applications for Electrical Energy Storage

3.2.1 General Considerations for High‐Temperature Dielectrics

3.2.2 High‐Temperature‐Resistant Polymer Matrix

3.2.3 Polymer Composites for High‐Temperature Energy Storage Applications

3.2.4 Surface Modification of Nanocomposite forHigh‐Temperature Applications

3.2.5 Sandwich Structure of Nanoparticles forHigh‐Temperature Applications

3.3 Applications of High‐Temperature Polymer in Electronic Packaging

3.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design. 3.3.1.1 Fluorine‐Containing Low Dielectric Constant Polymer

3.3.1.2 Low Dielectric Constant Polymer Material Containing NonpolarRigid Bulk Group

3.3.2 High‐Temperature‐Resistant Low Dielectric Constant Polymer Composite Material

3.3.2.1 Low Dielectric Constant Polyoxometalates/Polymer Composite

3.3.2.2 Low Dielectric Constant POSS/Polymer Composite

3.4 Applications of Polymer Composite Materials in the Field of High‐Temperature Wave‐Transmitting and Wave‐Absorbing Electrical Fields

3.4.1 Wave‐Transmitting Materials

3.4.1.1 The High‐Temperature Resin Matrix

3.4.1.2 Reinforced Materials

3.4.2 Absorbing Material

3.4.2.1 The High‐Temperature Resin Matrix

3.4.2.2 Inorganic Filler

3.5 Summary

References

4 Fire‐Retardant Polymer Composites forElectrical Engineering

4.1 Introduction

4.2 Fire‐Retardant Cables and Wires. 4.2.1 Fundamental Overview

4.2.2 Understanding of Fire‐Retardant Cables and Wires. 4.2.2.1 Polyethylene Composites

4.2.2.2 Ethylene‐Vinyl Acetate (EVA) Copolymer

4.2.2.3 Polyvinyl Chloride Composites

4.2.2.4 Other Polymers

4.3 Fire‐Retardant Polymer Composites for Electrical Equipment. 4.3.1 Fundamental Overview

4.3.2 Understanding of Fire‐Retardant Polymer Composites for Electrical Equipment. 4.3.2.1 HIPS and ABS Composites

4.3.2.2 PC/ABS Composites

4.3.2.3 PC Composites

4.3.2.4 PBT Composites

4.4 Fire‐Retardant Fiber Reinforced Polymer Composites. 4.4.1 Fundamental Overview

4.4.2 Understanding of Fire‐Retardant Fiber Reinforced Polymer Composites. 4.4.2.1 Reinforced PBT and PET Composites

4.5 Conclusion and Outlook

References

5 Polymer Composites for Power Cable Insulation

5.1 Introduction

5.2 Trend in Nanocomposite Materials for Cable Insulation

5.2.1 Overview

5.2.2 Polymer Materials as Matrix Resin

5.2.3 Fillers

5.2.4 Nanocomposites

5.2.4.1 XLPE Nanocomposites

5.2.4.2 PP Nanocomposites

5.2.4.3 Nanocomposite with Cluster/Cage Molecule

5.2.4.4 Copolymer and Polymer Blend

5.3 Factors Influencing Properties

5.4 Issues in Nanocomposite Insulation Materials Research

5.5 Understanding Dielectric and Insulation Phenomena

5.5.1 Electromagnetic Understanding

5.5.2 Understanding Space Charge Behavior by Q(t) Method

References

6 Semi‐conductive Polymer Composites for Power Cables

6.1 Introduction

6.1.1 Function of Semi‐conductive Composites

6.1.2 Development of Semi‐conductive Composites

6.2 Conductive Mechanism of Semi‐conductive Polymer Composites

6.2.1 Percolation Theory

6.2.2 Tunneling Conduction Theory

6.2.3 Mechanism of Positive Temperature Coefficient

6.3 Effect of Polymer Matrix on Semi‐conductivity

6.3.1 Thermoset Polymer Matrix

6.3.2 Thermoplastic Polymer Matrix

6.3.3 Blended Polymer Matrix

6.4 Effect of Conductive Fillers on Semi‐conductivity

6.4.1 Carbon Black

6.4.2 Carbonaceous Fillers with One‐ and Two‐Dimensions

6.4.3 Secondary Filler for Carbon Black Filled Composites

6.5 Effect of Semi‐conductive Composites on Space Charge Injection

6.6 Conclusions

References

7 Polymer Composites for Electric Stress Control

7.1 Introduction

7.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress

7.3 Practical Application of ε‐FGMs to GIS Spacer

7.4 Application to Power Apparatus

References

8 Composite Materials Used in Outdoor Insulation

8.1 Introduction

8.2 Overview of SIR Materials

8.2.1 RTV Coatings

8.2.2 Composite Insulators

8.2.3 Liquid Silicone Rubber (LSR)

8.2.4 Aging Mechanism and Condition Assessment of SIR Materials

8.3 New External Insulation Materials

8.3.1 Anti‐icing Semiconductor Materials

8.3.2 Hydrophobic CEP

8.4 Summary

References

9 Polymer Composites for Embedded Capacitors

9.1 Introduction. 9.1.1 Development of Embedded Technology

9.1.2 Dielectric Materials for Commercial Embedded Capacitors

9.2 Researches on the Polymer‐Based Dielectric Nanocomposites

9.2.1 Filler Particles

9.2.2 Epoxy Matrix

9.2.2.1 Modification to Improve Dielectric Properties

9.2.2.2 Modification to Improve Mechanical Properties

9.3 Fabrication Process of Embedded Capacitors

9.4 Reliability Test of Embedded Capacitor Materials

9.5 Conclusions and Perspectives

References

10 Polymer Composites for Generators and Motors

10.1 Introduction

10.2 Polymer Composite in High‐Voltage Rotating Machines

10.3 Ground Wall Insulation. 10.3.1 Mica/Epoxy Insulation

10.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism

10.3.3 Insulation Design and V‐t Curve

10.4 Polymer Nanocomposite for Rotating Machine

10.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property. 10.4.1.1 PD Resistance

10.4.1.2 Electrical Treeing Lifetime

10.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine

10.4.2.1 Voltage Endurance Test of Void Defect

10.4.2.2 Voltage Endurance Test in Mica/Epoxy Nanocomposite‐Layered Structure

10.4.2.3 V‐t Curves in Coil Bar Model with Mica/Epoxy Nanocomposite Insulation

10.5 Stress‐Grading System of Rotating Machines. 10.5.1 Silicon Carbide Particle‐Loaded Nonlinear‐Resistive Materials

10.5.2 End‐turn Stress‐Grading System of High‐Voltage Rotating Machines

References

11 Polymer Composite Conductors and Lightning Damage

11.1 Lightning Environment and Lightning Damage Threat to Composite‐Based Aircraft. 11.1.1 The Lightning Environment. 11.1.1.1 Formation of Lightning

11.1.2 Lightning Test Environment of Aircrafts

11.1.2.1 Zone 1

11.1.2.2 Zone 2

11.1.2.3 Zone 3

11.1.2.4 Current Component A – First Return Strike

11.1.2.5 Current Component Ah – Transition Zone First Return Strike

11.1.2.6 Current Component B – Intermediate Current

11.1.2.7 Current Component C – Continuing Current

11.1.2.8 Component C* – Modified Component C

11.1.2.9 Current Component D – Subsequent Strike Current

11.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing

11.1.4 Application of CFRP Composites in Aircraft

11.2 The Dynamic Conductive Characteristics of CFRP. 11.2.1 A Review of the Research on the Conductivity of CFRP

11.2.2 The Testing Methods

11.2.2.1 Specimens

11.2.2.2 The Test Fixture

11.2.2.3 Lightning Impulse Generator and Lightning Waveforms

11.2.3 The Experimental Results of the Dynamic Impedance of CFRP. 11.2.3.1 The Nondestructive Lightning Current Test

11.2.3.2 The Applied Lightning Current Impulse and the Response Voltage Impulse

11.2.3.3 Equivalent Conductivity of CFRP Laminates Under Different Lightning Impulses

11.2.3.4 Equivalent Conductivity of CFRP Laminates with Different Laminated Structures

11.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP. 11.2.4.1 The Conduction Path of the CFRP Laminate Under a Lightning Current Impulse

11.2.4.2 Dynamic Conductance of CFRP Laminate

11.2.4.3 The Inductive Properties of CFRP Laminates

11.2.4.4 Equivalent Conductivity of CFRP Laminates Subjected to Lightning Current Impulses with Higher Intensity

11.3 The Lightning Strike‐Induced Damage of CFRP Strike. 11.3.1 Introduction of the Lightning Damage of CFRP

11.3.2 Single Lightning Strike‐Induced Damage. 11.3.2.1 Experimental Setup for Single Lightning Strike Test

11.3.2.2 Experimental Results of Single Lightning Strike‐Induced Damage. 11.3.2.2.1 Lightning Strike Process

11.3.2.2.2 Surface Damage of the CFRP Laminates

11.3.2.2.2.1 Zone I

11.3.2.2.2.2 Zone II

11.3.2.2.2.3 Zone III

11.3.2.2.3 Internal Damage Behavior

11.3.2.3 Evaluation for Single Lightning Strike‐Induced Damage

11.3.3 Multiple Lightning Strikes‐Induced Damage

11.3.3.1 Experimental Method for Multiple Consecutive Lightning Strike Tests. 11.3.3.1.1 Test Specimens

11.3.3.1.2 Experimental Setup

11.3.3.1.3 Test Method for Multiple Lightning Damage Test

11.3.3.2 Experimental Results of Multiple Lightning Damage. 11.3.3.2.1 Visual Inspection of Lightning Damage

11.3.3.2.2 Temperature Properties of CFRP Laminates After Multiple Lightning Strike

11.3.3.2.3 Internal Damage Images

11.3.3.3 Multiple Lightning Damage Areas and Depths of CFRP Laminates

11.3.3.4 Analysis for Multiple Lightning Damage of CFRP Laminates

11.3.3.4.1 Lightning Damage Depth

11.3.3.4.2 Lightning Damage Area

11.3.3.4.3 Comparison of the Lightning Damage of Different Test Modes of Lightning Strike. 11.3.3.4.3.1

11.3.3.4.3.2 The Comparison of Lightning Damage Effect in “ABC” and “DBC” Test Modes

11.3.3.4.3.3 The Influence of Material Properties on Lightning Damage of Multiple Sequential Lightning Strikes

11.3.3.5 Evaluation for Multiple Lightning Damage of CFRP Laminates. 11.3.3.5.1 Evaluation for the Lightning Damage Depth

11.3.3.5.1.1 Influence of the Current Amplitude on the Lightning Damage Depth

11.3.3.5.1.2 Influence of the Rise Rate on the Lightning Damage Depth

11.3.3.5.1.3 Evaluation for the Lightning Damage Area

11.3.3.5.1.4 The Influence of the Electrical Action Integral on the Lightning Damage Area

11.3.3.5.1.5 Influence of the Transfer Charge on the Lightning Damage Area

11.3.3.5.2 Summary of the Evaluation Methods

11.4 The Simulation of Lightning Strike‐Induced Damage of CFRP. 11.4.1 Overview of Lightning Damage Simulation Researches

11.4.2 Establishment of the Coupled Thermal‐Electrical Model. 11.4.2.1 Finite Element Model

11.4.2.2 Simulated Lightning Component A

11.4.2.3 Pyrolysis Degree Calculation

11.4.2.4 Dynamic Conductive Properties

11.4.2.5 Pyrolysis‐Dependent Material Parameters

11.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates. 11.4.3.1 Temperature and Pyrolysis Fields

11.4.3.2 Mechanical Analysis

11.4.4 Simulated Lightning Damage Results. 11.4.4.1 Numerical Criterion for Lightning Damage

11.4.4.1.1 Temperature Field Criterion

11.4.4.1.2 Pyrolysis Degree Field Criterion

11.4.4.2 In‐Plane Lightning Damage Evaluation

11.4.4.3 In‐Depth Lightning Damage Evaluation

References

12 Polymer Composites for Switchgears

12.1 Introduction

12.2 History of Switchgear

12.3 Typical Insulators in Switchgears. 12.3.1 Epoxy‐based Composite Insulators

12.3.2 Insulator‐Manufacturing Process

12.3.2.1 Vacuum Casting Method

12.3.2.2 Automatic Pressure Gelation Method

12.3.2.3 Vacuum Pressure Impregnation Method

12.4 Materials for Epoxy‐based Composites

12.4.1 Epoxy Resins

12.4.2 Hardeners

12.4.3 Inorganic Fillers and Fibers

12.4.4 Silane Coupling Agents

12.4.5 Fabrication of Epoxy‐based Composites

12.5 Properties of Epoxy‐based Composites

12.5.1 Necessary Properties of Epoxy‐based Composites for Switchgears

12.5.2 Resistance to Thermal Stresses. 12.5.2.1 Glass Transition Temperature

12.5.2.2 Coefficient of Thermal Expansion (CTE)

12.5.3 Resistances to Electrical Stresses. 12.5.3.1 Short‐term Insulation Breakdown

12.5.3.2 Long‐term Insulation Breakdown (V‐t Characteristics)

12.5.3.3 Relative Permittivity and Resistivity

12.5.4 Resistances to Ambient Stresses. 12.5.4.1 Resistance to SF6 Decomposition Gas

12.5.4.2 Water Absorption

12.5.5 Resistances to Mechanical Stresses. 12.5.5.1 Flexural and Tensile Strength

12.5.5.2 Creep

12.5.6 International Standards for Evaluation of Composites

12.6 Advances of Epoxy‐based Composites for Switchgear

12.6.1 Nanocomposites

12.6.2 High Thermal Conductive Composites

12.6.3 Biomass Material‐Based Composites

12.6.4 Functionally Graded Materials

12.6.5 Estimate of Remaining Life of Composites

12.7 Conclusion

References

13 Glass Fiber‐Reinforced Polymer Compositesfor Power Equipment

13.1 Overview

13.2 Glass Fiber‐Reinforced Polymer Composites. 13.2.1 Fibers

13.2.1.1 Chemical Description

13.2.1.2 Classification of Glass Fibers

13.2.1.3 Properties of Glass Fiber

13.2.1.4 Glass Fabrics

13.2.1.5 Advantages and Disadvantages

13.2.1.6 Common Manufacturing Methods

13.2.1.7 Applications of Glass Fiber in Various Industries

13.2.2 Polymers

13.2.2.1 Epoxy

13.2.2.2 Polyester (Thermosetting)

13.2.2.3 Phenolic

13.2.3 Manufacturing Methods

13.2.4 Specifications of Several Kinds of GFRP Materials. 13.2.4.1 Rigid Laminated Sheets

13.2.4.2 Industrial Rigid Round Laminated Rolled Tubes (Tables 13.10 and 13.11)

13.2.4.3 Insulated Pipe (Table 13.12)

13.2.4.4 Insulated Pull Rod

13.3 Application of Glass Fiber‐Reinforced Polymer Composites. 13.3.1 Laminated Sheets

13.3.2 Composite Long Rod Insulators

13.3.3 UHV‐Insulated Pull Rod for GIS

13.3.4 Composite Pole

13.3.5 Aluminum Conductor Composite Core in an Overhead Conductor

13.3.6 Composite Station Post Insulators

13.3.7 Composite Hollow Insulators

13.3.8 Composite Crossarms

References

Index

a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

Figure 1.11 (a) Schematic of the trilayer‐structured film composed of PVDF/BNNS as outer layers and PVDF/BST as the middle layer, (b) cross‐sectional SEM image of trilayer‐structured polymer composites, (c) discharged energy density, and (d) charge/discharge efficiency of PVDF‐based composites with various compositions and structures.

Source: Liu et al. [87]. Reproduced with permission of John Wiley & Sons.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Polymer Composites for Electrical Engineering
Подняться наверх