The Solar System 2

The Solar System 2
Автор книги: id книги: 2220770     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16597,9 руб.     (180,85$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119881681 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book presents a global and synthetic vision of planetology – the study of objects in the Solar System. In the past several decades, planetology has undergone a real revolution, marked in particular by the discovery of the Kuiper belt beyond Neptune, the discovery of extrasolar planets, and also by the space exploration of ever more distant objects. Today, it is at the crossroads of many disciplines: astronomy, geophysics, geochemistry and biology.<br /><br /><i>The Solar System 2</i> studies the outer Solar System: satellites and rings of giant planets, small bodies and dwarf planets. It also deals with meteorites and cosmochemistry, as well as the formation and dynamics of the Solar System. It addresses the question of the origin of life and extraterrestrial life, and presents all of the methods in the study of planetology.

Оглавление

Группа авторов. The Solar System 2

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

The Solar System 2. External Satellites, Small Bodies, Cosmochemistry, Dynamics, Exobiology

Preface

1. Satellites and Rings of the Giant Planets

1.1. Introduction

1.2. Jupiter’s satellites

1.2.1. The Galilean satellites

1.2.1.1. Io

1.2.1.2. Europa

1.2.1.3. Ganymede

1.2.1.4. Callisto

1.2.1.5. Current and future exploration of the Galilean satellites

1.2.2. The minor Jovian satellites

1.3. Saturn’s satellites

1.3.1. Titan

1.3.1.1. The atmosphere of Titan: a biological factory

1.3.1.2. Evolution of Titan’s atmosphere during the Cassini mission

1.3.1.3. Change in the atmosphere during a year on Titan

1.3.1.4. The surface of Titan

1.3.1.5. The interior of Titan

1.3.1.6. Origin of the atmosphere and interactions with the surface and the interior

1.3.2. Enceladus

1.3.3. The other icy satellites

1.3.3.1. Regular and irregular satellites

1.3.3.2. The small satellites near the rings and their interactions

1.3.4. Challenges for future missions in the Saturn system and Dragonfly

1.4. The satellites of Uranus and Neptune

1.4.1. The satellites of Uranus

1.4.2. The satellites of Neptune

1.4.3. Future exploration of the icy giant planets’ systems

1.5. The rings

1.5.1. Tidal forces and the Roche limit

1.5.2. Flattening and ring dispersion

1.5.3. Jupiter’s rings

1.5.4. Saturn’s rings

1.5.5. Uranus’s rings

1.5.6. Neptune’s rings

1.5.7. The rings of small bodies. 1.5.7.1. Chariklo-Haumea

1.5.7.2. Transitory rings and disks

1.5.8. Ring dynamics

1.5.8.1. Resonances

1.5.8.2. Sharp edges

1.5.8.3. Dust

1.5.9. The origin of the rings

1.5.10. An exo-ring

1.6. References

2. Comets, Asteroids, and Dwarf Planets

2.1. Comets

2.1.1. Definition and nomenclature

2.1.2. The orbits and families of the comets

Box 2.1.The orbital elements

2.1.3. Cometary magnitude. Box 2.2.Cometary magnitude

2.1.4. Space exploration of the comets

2.1.4.1. Before Rosetta

2.1.4.2. Rosetta

2.1.4.3. After Rosetta

2.1.5. The nucleus. 2.1.5.1. Size, albedo, and rotation

2.1.5.2. Mass, density, and structure

2.1.6. The atmosphere. 2.1.6.1. The sublimation of ice

Box 2.3.Thermal balance and the sublimation of ice

2.1.6.2. The hydrodynamics of cometary atmospheres

2.1.6.3. The photochemistry of cometary atmospheres

Box 2.4.The Haser formulas

2.1.6.4. Parent molecules

Box 2.5.Ortho and para H2O

2.1.6.5. Daughter molecules, radicals, and ions

2.1.6.6. Isotopic ratios

2.1.7. Dust and the tail

2.1.7.1. Kinematics of dust tails

2.1.7.2. Composition of the grains

2.1.7.3. Size of the grains

2.1.7.4. Dust ejection rates

2.1.8. The chemical diversity of the comets: a relationship to their origins?

2.1.9. The interaction of comets with solar wind

2.2. The “historical” asteroids

Box 2.6.How to name an asteroid

2.2.1. The asteroids in the main belt

2.2.2. The asteroids that cross the orbit of the terrestrial planets

2.2.3. The Trojan asteroids

2.2.4. The properties of asteroids

2.2.4.1. Physical properties

2.2.4.2. The geology of asteroids

2.2.4.3. Chemical and mineralogical composition of the asteroids

2.3. The “new” asteroids

2.3.1. The Centaurs

2.3.2. Trans-Neptunian objects

2.3.3. Interstellar objects

2.3.4. The origin and evolution of the asteroids

2.4. The dwarf planets

Box 2.7.Official definition of a dwarf planet

2.4.1. Ceres

2.4.2. Pluto and its satellites

2.4.3. Eris, Haumea, and Makemake

2.4.3.1. Eris

2.4.3.2. Haumea

2.4.3.3. Makemake

2.4.3.4. The candidate dwarf planets

2.5. References

3. Meteorites and Cosmochemistry

3.1. Rocks falling from the sky

3.2. Origin of meteorites

3.3. Planetary differentiation and groups of meteorites

3.4. Chondrites and the origin of the Solar System

3.4.1. The chemical composition of chondrites

3.4.2. The mineralogy of chondrites

3.4.3. The isotopic characteristics of bulk meteorites

3.5. Differentiated meteorites

3.5.1. Fragments of the asteroid Vesta

3.5.2. Iron meteorites

3.5.3. Pallasites

3.5.4. Fragments of the planet Mars

Box 3.1.How to determine the age of a meteorite

3.6. Witnesses to the formation and evolution of the Solar System

3.7. References

4. Formation and Dynamic History of the Solar System1

4.1. Introduction

4.2. Laws of motion of the planets and satellites

4.2.1. Kepler’s laws

4.2.2. Gravity

4.2.3. Newton’s fundamental laws of dynamics

4.2.4. The orbital elements

4.3. The two-body problem

4.4. The three-body problem

4.4.1. Jacobi constant and Lagrange points

4.4.2. Tadpole and horseshoe orbits

4.4.3. Hill sphere

4.5. Perturbations and resonances

4.6. Stability and chaos in the Solar System

4.7. Orbits in relation to a flattened body

4.8. Tidal effect

4.8.1. Tidal deformation

Box 4.1.Ocean tides on Earth

4.8.2. Tidal torque

4.8.3. Roche limit

4.9. Nongravitational forces and orbits of small bodies

4.9.1. Radiation pressure (micrometer-sized grains)

4.9.2. Poynting-Robertson effect (small macroscopic particles)

4.9.3. The Yarkovsky Effect (meter to kilometer-sized particles)

4.9.4. Yorp torque (asymmetric bodies)

4.9.5. Friction from solar particles (submicrometer dust)

4.9.6. Friction in gas

4.10. Formation of planetary systems

4.10.1. A disk of planetoids

4.10.2. Formation of terrestrial planets

4.10.3. Formation of Jupiter

4.10.4. Formation of giant planets by core accretion

4.10.5. Formation by disk instability

4.10.6. Disappearance of the gas

4.10.7. Catastrophic collisions

4.10.7.1. Formation of the Moon

4.10.7.2. The case of Mercury

4.10.8. Small bodies

4.10.9. Planetary migration

4.10.9.1. Type I migration

4.10.9.2. Type II migration

4.10.10. Fate of the small bodies

4.10.10.1. The asteroids in the main belt

4.10.10.2. The Kuiper disk and the Oort cloud

4.10.10.3. Planetary satellites and small bodies

4.10.11. Exoplanetary formation

4.11. References

5. Origin of Life and Extraterrestrial Life

5.1. Definition of life

5.2. The appearance of life on Earth. 5.2.1. Physicochemical conditions

5.2.2. The first forms of life

5.2.3. The formation of living cells

5.3. Life elsewhere in the Solar System

5.3.1. Mars

5.3.2. Venus

5.3.3. Satellites of the giant planets

5.4. How can life be detected on exoplanets?

5.5. Communicating with other civilizations?

5.6. References

6. Methods for Studying the Solar System

6.1. History

6.2. Observational techniques. 6.2.1. Remote sensing. 6.2.1.1. Photometry and imagery

6.2.1.2. Spectroscopy and polarimetry

6.2.1.2.1. Spectroscopy

6.2.1.2.2. Spectral imaging

6.2.1.2.3. Polarimetry

6.2.1.3. The stellar occultation method

6.2.1.4. Observation of the Solar System at radio wavelengths

6.2.1.4.1. The Sun

6.2.1.4.2. The planets

6.2.1.4.3. Heterodyne spectroscopy

6.2.2. Methods of space exploration

Box 6.1.Categories of space instruments

6.2.2.1. Atmospheric probes

6.2.2.2. Chemical analysis

6.2.2.2.1. UV, V, IR spectroscopic analysis

6.2.2.2.2. X-ray spectroscopic analysis

6.2.2.2.3. γ spectroscopic analysis

6.2.2.3. Measuring space plasma. 6.2.2.3.1. A variety of environments

6.2.2.3.2. Measurement of plasma

6.2.2.3.3. Measurement of the magnetic field

6.2.2.3.4. Measurement of waves

6.2.2.3.5. Spectral imaging

6.2.3. Virtual Observatory and databases. 6.2.3.1. Virtual Observatory

6.2.3.2. Spectroscopic databases

6.2.4. Perspectives of ground-based and space observations. 6.2.4.1. Ground-based observations

6.2.4.1.1. The Giant Magellan Telescope (GMT)

6.2.4.1.2. The Thirty Meter Telescope (TMT)

6.2.4.1.3. The Extremely Large Telescope (ELT)

6.2.4.1.4. The Square Kilometer Array (SKA)

6.2.4.2. Space-based observations

6.2.4.2.1. Plato

6.2.4.2.2. Ariel

6.2.4.2.3. Comet Interceptor

6.2.4.2.4. Psyche

6.2.4.2.5. Lucy

6.2.4.2.6. Mars 2020 and ExoMars 2022

6.2.4.2.7. MMX

6.2.4.2.8. Juice and Europa Clipper

6.2.4.2.9. Dragonfly

6.3. Computer simulations. 6.3.1. Dynamics

6.3.1.1. Multi-scale and multi-physics problems

6.3.1.2. Some models

6.3.1.3. Computing machines

6.3.1.4. Models for understanding planetary formation

6.3.2. Global climate models

6.3.2.1. Description of a GCM. 6.3.2.1.1. 1D models

6.3.2.1.2. Simplified 2D and 3D models

6.3.2.1.3. 3D global models

6.3.2.2. Application to Mars

6.3.2.3. Other objects in the Solar System and exoplanets

6.4. References

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Universe, Field Director – Fabienne Casoli

.....

Thérèse Encrenaz

James Lequeux

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу The Solar System 2
Подняться наверх