Biopharmaceutics

Biopharmaceutics
Автор книги: id книги: 2226340     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 11963,2 руб.     (130,35$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Медицина Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119678373 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore the latest research in biopharmaceutics from leading contributors in the field  In Biopharmaceutics – From Fundamentals to Industrial Practice , distinguished Scientists from the UK's Academy of Pharmaceutical Sciences Biopharmaceutica Focus Group deliver a comprehensive examination of the tools used within the field of biopharmaceutics and their applications to drug development. This edited volume is an indispensable tool for anyone seeking to better understand the field of biopharmaceutics as it rapidly develops and evolves.  Beginning with an expansive introduction to the basics of biopharmaceutics and the context that underpins the field, the included resources go on to discuss how biopharmaceutics are integrated into product development within the pharmaceutical industry. Explorations of how the regulatory aspects of biopharmaceutics function, as well as the impact of physiology and anatomy on the rate and extent of drug absorption, follow.  Readers will find insightful discussions of physiologically based modeling as a valuable asset in the biopharmaceutics toolkit and how to apply the principles of the field to special populations. The book goes on to discuss:  Thorough introductions to biopharmaceutics, basic pharmacokinetics, and biopharmaceutics measures Comprehensive explorations of solubility, permeability, and dissolution Practical discussions of the use of biopharmaceutics to inform candidate drug selection and optimization, as well as biopharmaceutics tools for rational formulation design In-depth examinations of biopharmaceutics classification systems and regulatory biopharmaceutics, as well as regulatory biopharmaceutics and the impact of anatomy and physiology Perfect for professionals working in the pharmaceutical and biopharmaceutical industries,  Biopharmaceutics – From Fundamentals to Industrial Practice  is an incisive and up-to-date resource on the practical, pharmaceutical applications of the field.

Оглавление

Группа авторов. Biopharmaceutics

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Biopharmaceutics. From Fundamentals to Industrial Practice

List of Contributors

Foreword

1 An Introduction to Biopharmaceutics

1.1 Introduction

1.2 History of Biopharmaceutics

1.3 Key Concepts and Definitions Used Within Biopharmaceutics

1.4 The Role of Biopharmaceutics in Drug Development

1.5 Conclusions

References

2 Basic Pharmacokinetics

2.1 Introduction

2.2 What is ‘Pharmacokinetics’?

2.3 Pharmacokinetic Profile

2.4 Bioavailability

2.5 Drug Distribution

Box 2.1 Drug Concentration in blood is not the same as the drug concentration in plasma!

Box 2.2 Why measure drug concentrations?

2.6 Volume of Distribution

Box 2.3 Total body water

2.7 Elimination

2.7.1 Metabolism

2.7.2 Excretion

2.8 Elimination Half‐Life (t½)

2.9 Elimination Rate Constant

Box 2.4 How long it will take for the drug to eliminate completely from the body?

2.9.1 Clearance

Box 2.5 The elimination rate constant, k and the elimination half‐life (t½)

2.10 Area Under the Curve (AUC)

2.11 Bioequivalence

2.12 Steady State

Box 2.6 How long it takes to get to the steady state?

Box 2.7 Therapeutic drug monitoring (TDM)

2.13 Compartmental Concepts in Pharmacokinetics

2.14 Concept of Linearity in Pharmacokinetics

2.15 Conclusions

Further Reading

3 Introduction to Biopharmaceutics Measures

3.1 Introduction

3.2 Solubility

3.3 Dissolution

3.4 Permeability

3.5 Absorptive Flux

3.6 Lipinsky's Rule of 5

3.6.1 Molecular Weight

3.6.2 Lipophilicity

3.6.3 Hydrogen Bond Donors/Acceptors

References

4 Solubility

4.1 Definition of Solubility

4.2 The Importance of Solubility in Biopharmaceutics

4.3 What Level of Solubility Is Required?

4.4 Solubility‐Limited Absorption

4.5 Methods to Assess Solubility

4.6 Brief Overview of Forces Involved in Solubility

4.6.1 van der Waals Interactions

4.6.2 Hydrogen Bonding

4.6.3 Ionic Interactions

4.7 Solid‐State Properties and Solubility

4.8 pH and Drug Solubility

4.9 Solvents

4.9.1 Biorelevant Solubility

4.9.2 Buffer System – Phosphate vs Bicarbonate

4.9.3 Solubilisation by Surfactants

4.9.4 Solubilisation During Digestion

4.9.5 Excipients and Solubility

4.10 Risk of Precipitation

4.11 Solubility and Link to Lipophilicity

4.12 Conclusions

References

5 Permeability

5.1 Introduction

5.2 Enzymes, Gut Wall Metabolism, Tissue Permeability and Transporters

5.2.1 Enzymes

5.2.2 Drug Transporters

5.2.3 Efflux Transporters

5.2.4 Transporters of Greatest Relevance to Oral Biopharmaceutics

5.2.5 Regulatory Overview of Transporter Effects on Biopharmaceutics

5.2.6 Regional Expression and Polymorphism of Intestinal Transporters and Impact of Drug Variability

5.3 Applications and Limitations of Characterisation and Predictive Tools for Permeability Assessment

5.3.1 In Silico Tools: Predictive Models for Permeability

5.3.2 In Vitro Tools. 5.3.2.1 PAMPA

5.3.2.2 Cell Lines

5.3.3 Ex Vivo Tools

5.3.3.1 Ussing Chambers

5.3.3.2 Everted Intestinal Sac/Ring

5.3.4 In Situ Tools

5.3.4.1 Closed‐Loop Intestinal Perfusion

5.3.4.2 Single‐Pass Intestinal Perfusion

5.3.4.3 Intestinal Perfusion with Venous Sampling

5.3.4.4 Vascularly Perfused Intestinal Models

5.4 In Vivo Tools

5.5 Conclusion

References

6 Dissolution

6.1 Introduction

6.2 Purpose of Dissolution Testing

6.2.1 Dissolution Versus Solubility

6.3 History of Dissolution Testing

6.4 Compendial (Pharmacopeial) Dissolution Apparatus

6.4.1 USP1 and 2 Apparatus

6.4.2 USP3 Apparatus

6.4.3 USP4 Apparatus

6.4.4 USP5 Apparatus

6.4.5 USP6 Apparatus

6.4.6 USP7 Apparatus

6.4.7 Intrinsic Dissolution Rate (IDR) Apparatus

6.4.8 Micro‐dissolution Apparatus

6.5 Dissolution Media Selection

6.5.1 Biphasic Dissolution Media

6.6 Dissolution Agitation Rates

6.7 Reporting Dissolution Data

6.8 In Vitro In Vivo Relationships and Correlations (IVIVR/IVIVC)

6.8.1 Convolution and Deconvolution of Dissolution Data

6.9 Evolution of Biorelevant Dissolution Testing

6.9.1 Biorelevant Dissolution Media

6.9.2 Dissolution Testing to Mimic GI Transit

6.9.3 Dissolution Testing to Mimic Motility/Hydrodynamic Conditions

6.9.4 Dissolution Testing to Incorporate Permeability

6.10 Conclusions

References

7 Biopharmaceutics to Inform Candidate Drug Selection and Optimisation

7.1 Introduction

7.2 Oral Product Design Considerations During Early Development

7.3 Biopharmaceutics in Drug Discovery

7.3.1 Pre‐Clinical Studies

7.4 Biopharmaceutics Assessment

7.4.1 Solubility

7.4.2 Permeability

7.4.3 Dissolution

7.4.4 Biopharmaceutics Classification System

7.4.5 Lipophilicity

7.4.6 pKa

7.4.7 Molecular Size

7.4.8 Crystallinity

7.4.9 In Vivo Pre‐Clinical Studies

7.4.10 In Silico Modelling

7.4.11 Human Absorption/Dose Prediction

7.5 Output of Biopharmaceutics Assessment

7.5.1 New Modalities/Complex Delivery Systems Within Early Development

7.6 Influence/Optimise/Design Properties to Inform Formulation Development

7.6.1 Fraction Absorbed Classification System

7.7 Conclusion

References

8 Biopharmaceutics Tools for Rational Formulation Design

8.1 Introduction

8.2 Formulation Development to Optimise Drug Bioavailability

8.3 Traditional Formulation Strategies. 8.3.1 Decision Making for Conventional or Enabling Formulations

8.4 Decision Trees to Guide Formulation Development. 8.4.1 Decision Trees Based on Biopharmaceutics Classification System (BCS)

8.4.2 Decision Trees Based on Developability Classification System (DCS)

8.4.3 Expanded Decision Trees

8.5 Computational Tools to Guide Formulation Strategies

8.5.1 Statistical Tools

8.5.2 Physiologically Based Pharmacokinetic/Biopharmaceutics Models

8.6 Decision‐Making for Optimising Enabling Formulations

8.7 Decision Trees for Enabled Formulations

8.7.1 Statistical Tools

8.7.2 Physiologically Based Pharmacokinetic/Biopharmaceutics Models

8.8 System‐Based Formulation Strategies. 8.8.1 Quality by Design

8.8.2 Tools to Identify Quality Target Product Profile

8.9 Biopharmaceutics Risk Assessment Roadmap (BioRAM)

8.9.1 Tools to Identify Quality Target Product Profile

8.10 Conclusions

References

9 Biopharmaceutic Classification System

9.1 Description and History of the BCS

9.2 BCS‐Based Criteria for Solubility, Dissolution and Permeability

9.3 BCS‐Based Biowaivers

9.4 Regulatory Development of BCS‐Based Biowaivers

9.5 International Harmonisation of BCS‐Based Biowaiver Criteria – ICH M9

Box 9.1 Summary of BCS Classification and Biowaiver Requirements in the ICH M9 Guideline

9.5.1 Application of BCS‐Based Biowaivers

9.5.1.1 Drug Product Type

9.5.1.2 Composition

9.5.1.3 Dissolution Similarity

9.6 BCS as a Development Tool

9.6.1 Candidate Selection

9.6.2 Solid Form Selection

9.6.3 Product Development

9.7 Beyond the BCS

9.7.1 Biopharmaceutic Drug Disposition Classification System (BDDCS)

9.7.2 Developability Classification System

9.7.3 Fraction Absorbed Classification System

9.7.4 BCS Applied to Special Populations

9.8 Conclusions

References

10 Regulatory Biopharmaceutics

10.1 Introduction

10.2 Clinical Bioequivalence Studies

10.3 Design of Clinical Bioequivalence (BE) Studies

10.4 Implication of Bioequivalence Metrics

10.5 Bioequivalence Regulatory Guidelines

10.6 Biowaivers

10.7 Biopharmaceutics in Quality by Design

10.8 Control of Drug Product and Clinically Relevant Specifications

10.9 Establishing Clinically Relevant Dissolution Methods and Specifications

Box 10.1 Five step process to establishing clinically relevant specifications described by Dickinson et al. [13, 15]

10.10 Application of In Silico Physiologically Based Biopharmaceutics Modelling (PBBM) to Develop Clinically Relevant Specifications

10.11 Additional Considerations for Establishing Dissolution Methods and Specifications

10.12 Common Technical Document (CTD)

10.13 Other Routes of Administration and Locally Acting Drug Products

10.14 Conclusion

References

11 Impact of Anatomy and Physiology

11.1 Introduction

11.2 Influence of GI Conditions on Pharmacokinetic Studies

11.3 The Stomach. 11.3.1 Gastric Anatomy

11.3.2 Gastric Motility and Mixing

11.3.3 Gastric Emptying

11.3.3.1 Gastric Fed State

11.3.4 Gastric Fluid Volume

11.3.5 Gastric Temperature

11.3.6 Gastric Fluid Composition

11.3.6.1 Gastric pH

11.3.6.2 Gastric Bile Salt Composition and Concentration

11.4 Small Intestine. 11.4.1 Small Intestinal Anatomy

11.4.2 Small Intestinal Motility and Mixing

11.4.3 Small Intestinal Transit Time

11.4.4 Small Intestinal Volume

11.4.5 Small Intestinal Fluid Composition

11.4.5.1 Small Intestinal pH

11.4.5.2 Small Intestinal Buffer Capacity

11.4.5.3 Small Intestinal Surface Tension

11.4.5.4 Small Intestinal Osmolality

11.4.5.5 Bile Salt Composition and Concentration

11.5 The Colon/Large Intestine

11.5.1 Large Intestine Anatomy

11.5.2 Large Intestinal Motility and Mixing

11.5.3 Large Intestinal Transit Time

11.5.4 Large Intestinal Volume

11.5.5 Large Intestinal Fluid Composition

11.5.5.1 Large Intestinal pH

11.5.5.2 Large Intestinal Buffer Capacity

11.5.5.3 Large Intestinal Surface Tension

11.5.5.4 Large Intestinal Osmolality

11.5.5.5 Bile Salt Composition and Concentration

11.5.6 Impact of Microbiome on Oral Drug Delivery

11.6 Conclusions

References

12 Integrating Biopharmaceutics to Predict Oral Absorption Using PBPK Modelling

12.1 Introduction

12.2 Mechanistic Models

12.3 Solubility Inputs

12.4 Dissolution Inputs

12.4.1 Fluid Dynamics and Dissolution

12.5 Permeability Inputs

12.6 Incorporation of Modelling and Simulation into Drug Development

12.6.1 Understanding the Effect of Formulation Modifications on Drug Pharmacokinetics

12.6.2 Model Verification/Validation

12.6.3 Using Modelling to Understand Bioequivalence

12.7 Conclusions

References

13 Special Populations

13.1 Introduction

13.2 Sex Differences in the Gastrointestinal Tract and Its Effect on Oral Drug Performance

13.3 Ethnic Differences in the Gastrointestinal Tract

13.4 Impact of Diet on Gastrointestinal Physiology

13.5 Pregnancy and Its Effect on Gastrointestinal Physiology

13.6 The Implication of Disease States on Gastrointestinal Physiology and Its Effect on Oral Drug Performance

13.7 Diseases that Affect the Gastrointestinal Tract

13.7.1 Irritable Bowel Syndrome

13.7.2 Inflammatory Bowel Disease

13.7.3 Celiac Disease

13.8 Infections in the Gastrointestinal Tract. 13.8.1 Helicobacter pylori Infection

13.9 Systemic Diseases that Alter GI Physiology and Function

13.9.1 Cystic Fibrosis

13.9.2 Parkinson's Disease

13.9.3 Diabetes

13.9.4 HIV Infection

13.10 Age‐related Influences on Gastrointestinal Tract Physiology and Function. 13.10.1 Gastrointestinal Physiology and Function in Paediatrics

13.10.2 Gastrointestinal Physiology and Function in Geriatrics

13.11 Conclusion

References

14 Inhalation Biopharmaceutics

14.1 Introduction

14.2 Structure of the Lungs

14.2.1 Basic Anatomy

14.2.2 Epithelial Lining Fluid

14.2.3 Epithelium

14.3 Molecules, Inhalation Devices, Formulations. 14.3.1 Inhaled Molecules

14.3.2 Inhalation Devices

14.3.2.1 Nebulisers

14.3.2.2 Pressurised Metered‐Dose Inhalers

14.3.2.3 Dry Powder Inhalers

14.3.2.4 ‘Soft Mist’ Inhalers

14.3.3 Inhaled Medicine Formulation

14.4 Inhaled Drug Delivery and Models for Studying Inhalation Biopharmaceutics

14.4.1 Dosimetry and Deposition

14.4.2 Mucociliary Clearance

14.4.3 Dissolution

14.4.4 Lung Permeability, Absorption and Retention

14.4.5 Metabolism

14.4.6 Non‐Clinical Inhalation Studies

14.4.7 Mechanistic Computer Modelling

14.5 Bioequivalence and an Inhalation Bioclassification System

14.6 Conclusion

References

Note

15 Biopharmaceutics of Injectable Formulations

15.1 Introduction

15.2 Subcutaneous Physiology and Absorption Mechanisms. 15.2.1 Physiology

15.2.2 Absorption Mechanisms

15.3 Intramuscular Physiology and Absorption Mechanisms. 15.3.1 Physiology

15.3.2 Absorption Mechanisms

15.4 In Vitro Performance and IVIVC

15.4.1 In Silico Models

15.4.2 Preclinical Models

15.5 Bioequivalence of Injectable Formulations

15.6 Summary

References

16 Biopharmaceutics of Topical and Transdermal Formulations

16.1 Introduction

16.2 Skin Structure

16.2.1 Transport of Drugs Through Skin

16.2.2 Skin Metabolism

16.3 Active Pharmaceutical Ingredient Properties

16.4 Topical and Transdermal Dosage Forms

16.5 Measurement of In Vitro Drug Release

16.5.1 Diffusion Cells

16.5.2 Compendial Dissolution Apparatus

16.6 Measurement of Skin Permeation

16.6.1 Tape‐Stripping ‘Dermatopharmacokinetics’ (DPK)

16.6.2 Confocal Laser Scanning Microscopy (CLSM)

16.6.3 Diffusion Cells Using Biorelevant Membranes to Model Permeation

16.6.3.1 Alternative Skin Substrates Used for Permeability Studies

16.6.4 Dermal Microdialysis

16.6.5 Skin Biopsy

16.6.6 In Silico Models of Dermal Absorption

16.6.7 Pre‐Clinical Models

16.7 Bioequivalence Testing of Topical/Transdermal Products

16.8 Conclusions

References

17 Impact of the Microbiome on Oral Biopharmaceutics

17.1 Introduction

17.2 Microbiome Distribution in the GI Tract

17.3 Key Causes of Microbiome Variability

17.4 Microbiome Influence on Key GI Parameters. 17.4.1 pH

17.4.2 Bile Acid Concentration and Composition

17.4.3 Drug Transporters

17.4.4 Motility

17.4.5 Hepatic Drug Metabolism

17.4.6 Epithelial Permeability

17.5 Enzymatic Degradation of Drugs by GI Microbiota

17.6 Exploitation of the GI Microbiome for Drug Delivery

17.7 Models of the GI Microbiome

17.7.1 In Vitro Models

17.7.2 In Silico Models

17.8 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

ADVANCES IN PHARMACEUTICAL TECHNOLOGY

A Wiley Book Series

.....

Figure 2.7 An illustration of the renal tubule (nephron) and its cortex and the medullary regions. CD, collecting duct; DCT, distal convoluted tubule; PCT, proximal convoluted tubule; PST, proximal straight tubule and TAL, thick ascending limb.

Source: From Kumaran and Hanukoglu [1] / John Wiley & Sons / CC BY 4.0.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Biopharmaceutics
Подняться наверх