Handbook of Aggregation-Induced Emission, Volume 3

Handbook of Aggregation-Induced Emission, Volume 3
Автор книги: id книги: 2329505     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 24095,3 руб.     (261,87$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119643067 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The third volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission  explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission.  In  Volume 3: Emerging Applications, the editors address the applications of AIEgens in several fields, including bio-imaging, fluorescent molecular switches, electrochromic materials, regenerative medicine, detection of organic volatile contaminants, hydrogels, and organogels. Topics covered include:  AIE-active emitters and their applications in OLEDs, and circularly polarized luminescence of aggregation-induced emission materials AIE polymer films for optical sensing and energy harvesting, aggregation-induced electrochemiluminescence, and mechanoluminescence materials with aggregation-induced emission Dynamic super-resolution fluorescence imaging based on photoswitchable fluorescent spiropyran Visualization of polymer microstructures Self-assembly of micelle and vesicles New strategies for biosensing and cell imaging Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Оглавление

Группа авторов. Handbook of Aggregation-Induced Emission, Volume 3

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Handbook of Aggregation‐Induced Emission. Volume 3 Emerging Applications

List of Contributors

Preface to Handbook of Aggregation‐Induced Emission

Preface to Volume 3: Applications

1 AIE‐active Emitters and Their Applications in OLEDs

1.1 Introduction

1.2 Conventional Aggregation‐induced Emissive Emitters

1.2.1 Blue Aggregation‐induced Emissive Emitters

1.2.2 Green Aggregation‐induced Emissive Emitters

1.2.3 Red Aggregation‐induced Emissive Emitters

1.2.4 Aggregation‐induced Emission‐active Emitters‐Based White OLED

1.3 High Exciton Utilizing Efficient Aggregation‐induced Emissive Materials

1.3.1 Aggregation‐induced Phosphorescent Emissive Emitters

1.3.2 Aggregation‐induced Delayed Fluorescent Emitters

1.3.3 Hybridized Local and Charge Transfer Materials Aggregation‐induced Emissive Emitters

1.4 Conclusion and Outlook

Acknowledgments

References

2 Circularly Polarized Luminescence of Aggregation‐induced Emission Materials

2.1 Introduction of Circularly Polarized Luminescence

2.2 Small Organic Molecules

2.3 Macrocycles and Cages

2.4 Metal Complexes and Clusters

2.5 Supramolecular Systems

2.6 Polymers

2.7 Liquid Crystals

2.8 Conclusions and Outlook

References

3 AIE Polymer Films for Optical Sensing and Energy Harvesting

3.1 Introduction

3.2 Working Mechanism of AIEgens

3.3 AIE‐doped Polymer Films for Optical Sensing

3.3.1 Mechanochromic AIE‐doped Polymer Films

3.3.2 Thermochromic AIE‐doped Polymer Films

3.3.3 Vapochromic AIE‐doped Polymer Films

3.4 AIE‐doped Polymer Films for Energy Harvesting

3.5 Conclusions

Acknowledgments

References

4 Aggregation‐induced Electrochemiluminescence

4.1 Introduction: From Electrochemiluminescence to AI‐ECL

4.1.1 Mechanisms of AI‐ECL

4.2 Classification and Properties of AI‐ECL luminophores

4.2.1 Metal Transition Complexes

4.2.2 Polymers and Polymeric Nanoaggregates

4.2.3 Organic Molecules

4.2.4 Hybrid and Functional Materials

4.3 Applications and Outlooks

References

5 Mechanoluminescence Materials with Aggregation‐Induced Emission

5.1 Introduction

5.2 Mechanoluminescence of Organic Molecules Not Mentioned AIE

5.3 ML–AIE Materials

5.4 Summary and Outlook

Acknowledgments

References

6 Dynamic Super‐resolution Fluorescence Imaging Based on Photo‐switchable Fluorescent Spiropyran

6.1 Introduction

6.2 Materials and Methods. 6.2.1 Materials

6.2.2 The Preparation of PSt‐b‐PEO Block Copolymer Micelles

6.2.3 Super‐resolution Microscope

6.2.4 Super‐resolution Imaging

6.3 Super‐resolution Imaging of Block Copolymer Self‐assembly

6.4 Optimization of Spatial Resolution

6.5 Temporal Resolution

6.6 Dynamic Super‐resolution Imaging

6.7 Conclusion and Prospection

Acknowledgment

References

7 Visualization of Polymer Microstructures :

7.1 Introduction

7.2 Synthetic Polymers

7.2.1 Polymer Self‐assembly

7.2.2 Polymerization Reaction

7.2.3 Physical Process Visualization

7.2.3.1 Glass Transition Temperature

7.2.3.2 Solubility Parameter

7.2.3.3 Crystallization

7.2.3.4 Microphase Separation

7.2.4 Stimuli Response

7.2.4.1 Heat Response

7.2.4.2 Humidity Response

7.2.4.3 Other Response

7.3 Biological Polymers

7.3.1 DNA Synthesis

7.3.2 DNA Sequence

7.3.3 Protein Conformation

7.3.4 Protein Fibrillation

7.3.5 Other Process

7.4 Summary and Perspective

Acknowledgments

References

8 Self‐assembly of Aggregation‐induced Emission Molecules into Micelles and Vesicles with Advantageous Applications

8.1 General Background of Micelles and Vesicles

8.2 AIE Micelles. 8.2.1 General Strategies Leading to AIE Micelles

8.2.1.1 Incorporating Tetraphenylethylene (TPE) Unit into Single‐Chained Surfactants

8.2.1.2 Incorporating Tetraphenylethylene (TPE) Unit into Gemini Surfactants

8.2.1.3 Incorporating Platinum Complex into Amphiphiles

8.2.1.4 Polymeric AIE Micelles

8.2.1.4.1 Incorporating Hydrophobic AIEgens into the Hydrophilic Polymers

8.2.1.4.2 Incorporating AIEgens into Amphiphilic Block Copolymers

8.2.1.5 Coassembled AIE Micelles

8.2.2 Applications of AIE Micelles

8.2.2.1 Untargeted Bioimaging

8.2.2.2 Targeted Bioprobing

8.2.2.3 Micellar Theranostics

8.2.2.4 Sensing

8.2.2.5 Visualization of Physical Chemistry Process

8.3 AIE Vesicles

8.3.1 AIE Vesicles Based on Synthetic Amphiphiles. 8.3.1.1 Synthetic Ionic AIE Amphiphiles

8.3.1.2 Synthetic Nonionic AIE Amphiphiles

8.3.1.3 Synthetic Nonamphiphilic AIE Molecules

8.3.2 Supramolecular AIE Vesicles

8.3.2.1 AIE Vesicles Directed by Host–Guest Chemistry

8.3.2.2 AIE Vesicles Based on Electrostatic Interactions

8.3.2.3 AIE Vesicles Based on Coordination Interactions

8.3.3 Applications of AIE Vesicles. 8.3.3.1 Cell Models

8.3.3.2 Bioimaging

8.3.3.3 Theranostics

8.3.3.4 Light‐harvesting

8.3.3.5 Other Applications

8.4 Summary and Outlooks

References

9 Vortex Fluidics‐mediated Fluorescent Hydrogels with Aggregation‐induced Emission Characteristics

9.1 Introduction

9.2 Tunning the Size and Property of AIEgens, a New Approach to Create FL Hydrogels with Superior Properties

9.3 AIEgens for Characterization of Hydrogels

9.4 Conclusion

References

10 Design and Preparation of Stimuli‐responsive AIE Fluorescent Polymers‐based Probes for Cells Imaging

10.1 Introduction

10.2 Design and Preparation Strategies for AIE–SRP Probes

10.2.1 Mechanism of AIE–SRP Probes

10.2.2 Stimuli‐Responsive Polymers

10.2.2.1 Thermal‐Sensitive Polymers

10.2.2.2 pH‐Sensitive Polymers

10.2.2.3 Photo‐Sensitive polymers

10.2.2.4 Protein‐Sensitive Polymers

10.2.3 AIE Dyes

10.2.4 Combination of Stimuli‐Sensitive Polymer and AIE Dyes. 10.2.4.1 Chemical Synthesis

10.2.4.1.1 Modification of AIE Dyes

10.2.4.1.2 Structure of AIE–SRP Probes

10.2.4.1.2.1 End‐Functionalized AIE–SRP Probes

10.2.4.1.2.2 Side‐Chain AIE–SRP Probes

10.2.4.1.2.3 Main‐Chain AIE–SRP Probes

10.2.4.1.2.4 Other Polymers

10.2.4.2 Physical Blending

10.3 Application of AIE–SRP Probes

10.3.1 Thermal‐Sensitive Application

10.3.2 pH‐Sensitive Application

10.3.3 Photo‐Sensitive Application

10.3.4 Protein‐Sensitive Application

10.3.5 MultiSensitive Application

10.4 Summary and Prospect

Acknowledgements

References

11 AIE: New Strategies for Cell Imaging and Biosensing

11.1 Introduction

11.2 Cellular Imaging

11.2.1 Cytoplasma Membrane Imaging

11.2.2 Mitochondria Imaging

11.2.3 Lysosome Imaging

11.2.4 Lipid Droplet Imaging

11.2.5 Nucleus Imaging

11.3 Biosensing

11.3.1 Ions

11.3.2 Lipids and Carbohydrates

11.3.3 Amino Acids, Proteins, and Enzymes

11.3.4 Nucleic Acids and Pathogens

11.4 Conclusion

References

12 AIE-based Systems for Imaging and Image-guided Killing of Pathogens

12.1 Introduction

12.2 Bacteria Imaging Based on AIEgens

12.2.1 Broad‐spectrum Bacterial Imaging and Identification

12.2.2 Gram Positive and Gram Negative Bacteria Distinguishing

12.2.3 Long‐term Bacterial Tracking

12.2.4 Live and Dead Bacteria Discrimination Based on AIEgens

12.3 Bacteria‐targeted Imaging and Ablation Based on AIEgens

12.3.1 Surfactant‐structure Based AIEgens for Bacterial Elimination

12.3.2 Photodynamic Therapy for Bacterial Elimination

12.3.2.1 Vancomycin‐bacteria Interaction Mediated Photodynamic Ablation

12.3.2.2 Positive‐charged AIE PS for Bacteria Ablation

12.3.2.3 Metabolic Labeling‐mediated Imaging and Photodynamic Ablation

12.3.3 AIEgen with Antimicrobial Agents for Bacteria Elimination

12.3.4 Biodegradable Biocides for Bacteria Elimination

12.4 Bacterial Susceptibility Evaluation and Antibiotics Screening

12.5 Sensors for Bacterial Detection Based on AIEgens. 12.5.1 Fluorescent Sensor Arrays

12.5.2 Biosensors Constructed by Electrospun Fibers

12.5.3 Micromotors for Bacterial Detection

12.6 Conclusions and Perspectives

References

13 AIEgen‐based Trackers for Cancer Research and Regenerative Medicine

13.1 Introduction

13.2 AIEgens for Long‐term Cancer Cell Tracking. 13.2.1 AIEgen‐based Long‐term Cell Trackers with Emission in the Visible Range

13.2.2 AIEgen‐based Long‐term Cell Trackers with Near‐infrared (NIR) Emission

13.2.3 AIEgen‐based Long‐term Cell Trackers with Multiphoton Absorption

13.2.4 AIEgen‐based Hybrid or Multifunctional Systems for Cell Tracking

13.3 AIEgens for Stem Cell‐based Regenerative Medicine and Regeneration‐related Process

13.3.1 AIEgen‐based Trackers for Adipose‐derived Stem Cells

13.3.2 AIEgen‐based Trackers for Bone Marrow Stem Cells

13.3.3 AIEgen‐based Trackers for Embryo‐related Cells

13.3.4 AIEgens for Monitoring Biological Process in Regenerative Medicine

13.3.5 AIEgen‐based Nanocomplexes in Regenerative Medicine

13.4 Conclusion

Acknowledgment

References

14 AIE‐active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics

14.1 Introduction

14.2 AIE‐active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics. 14.2.1 AIE‐active Fluorescence Probes for Alkaline Phosphatase

14.2.2 AIE‐active Fluorescence Probes for Caspases

14.2.3 AIE‐active Fluorescence Probes for Cathepsin B

14.2.4 AIE‐active Fluorescence Probes for β‐Galactosidase

14.2.5 AIE‐active Fluorescence Probes for γ‐Glutamyltranspeptidase

14.2.6 AIE‐active Fluorescence Probes for Reductases

14.2.6.1 AIE‐active Fluorescence Probes for AzoR

14.2.6.2 AIE‐active Fluorescence Probes for NQO1

14.2.6.3 AIE‐active Fluorescence Probes for NTR

14.2.6.4 AIE‐active Fluorescence Probes for CYP450 Reductase

14.2.7 AIE‐active Fluorescence Probes for Chymase

14.2.8 AIE‐active Fluorescence Probes for Esterase

14.2.8.1 AIE‐active Fluorescence Probes for CaE

14.2.8.2 AIE‐active Fluorescence Probes for Lipase

14.2.9 AIE‐active Fluorescence Probes for Histone Deacetylase

14.2.10 AIE‐active Fluorescence Probes for MMP‐2

14.2.11 AIE‐active Fluorescence Probes for Furin

14.2.12 AIE‐active Fluorescence Probes for Trypsin

14.2.13 AIE‐active Fluorescence Probes for Telomerase

14.2.14 AIE‐active Fluorescence Probes for DPP‐4

14.3 Summary and Outlook

References

15 AIE Nanoprobes for NIR‐II Fluorescence In Vivo Functional Bioimaging

15.1 Introduction

15.2 NIR‐II Fluorescence Macroimaging In Vivo

15.3 NIR‐II Fluorescence Wide‐field Microscopic Imaging In Vivo

15.4 NIR‐II Fluorescence Confocal Microscopic Imaging In Vivo

15.5 Summary and Perspectives

Acknowledgments

References

16 In Vivo Phototheranostics Application of AIEgen‐based Probes

16.1 Introduction

16.2 AIE Fluorescent Probe with Photodynamic Therapy Function

16.3 AIE Photoacoustic Probe with Photothermal Therapy Function

16.4 Application of AIE Fluorescent Probe in Synergistic Therapy

16.5 AIE Fluorescent Probe with Immunotherapy Function

16.6 Conclusions and Perspectives

References

17 Red‐emissive AIEgens Based on Tetraphenylethylene for Biological Applications

17.1 Introduction

17.2 TPE‐based AIEgens with Dicyanovinyl Group. 17.2.1 Design of Red‐emissive AIEgens with Dicyanovinyl Group

17.2.2 Red‐emissive AIEgens as Photosensitizers

17.2.3 Photosensitization Enhancement of AIEgens with Dicyanovinyl Group

17.2.4 Self‐assembly of AIEgens with Dicyanovinyl Groups

17.3 Pyridinium‐based AIEgens

17.3.1 Photophysical Properties of Pyridinium‐based AIEgens

17.3.2 Bio‐sensing Applications of Pyridinium‐substituted Tetraphenylethylenes

17.3.3 Bacterial Imaging and Ablation

17.3.4 Imaging and Interrupting Mitochondria and Related Biological Processes with Pyridinium‐based AIEgens

17.4 Summary and Perspectives

References

18 Smart Luminogens for the Detection of Organic Volatile Contaminants

18.1 Introduction

18.2 Smart AIE Nanomaterials and their Sensing Applications for OVCs. 18.2.1 Organic Framework

18.2.2 Molecular Rotors

18.2.3 Other Small Molecule

18.3 Summary and Outlook

References

19 Bulky Hydrophobic Counterions for Suppressing Aggregation‐caused Quenching of Ionic Dyes in Fluorescent Nanoparticles

19.1 Introduction

19.2 Counterion Effect in Nanomaterials Based on Conventional Bright Fluorophores

19.3 Counterions and Aggregation‐induced Emission

19.3.1 Counterion Effect in AIE Dyes

19.3.2 Ionic AIE: Lighting Up Environment‐sensitive Ionic Dyes in Nanomaterials

19.4 Dye‐loaded Polymeric NPs and the Crucial Role of Bulky Counterions. 19.4.1 Principle

19.4.2 The Role of the Polymer

19.4.3 The Role of the Counterion

19.4.4 Dye Nature

19.4.5 Energy Transfer, Collective Behavior of Dyes and Biosensing

19.5 Conclusions

Acknowledgments

References

20 Fluorescent Silver Staining Based on a Fluorogenic Ag+ Probe with Aggregation‐induced Emission Properties

20.1 Introduction

20.2 Historical Background of Silver Staining

20.2.1 Silver Staining for Neurological Studies

20.2.2 Silver Staining from Neuroscience to Proteomics

20.3 Conventional Silver Staining Methods

20.4 Fluorogenic Probes for Ag+ Detection

20.5 Fluorogenic Silver Staining in Polyacrylamide Gel

20.6 Concluding Remarks

References

Index. a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

q

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

Jianguo Wang Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China

Qiang Wei Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo, China

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Handbook of Aggregation-Induced Emission, Volume 3
Подняться наверх