Antenna and EM Modeling with MATLAB Antenna Toolbox

Antenna and EM Modeling with MATLAB Antenna Toolbox
Автор книги: id книги: 2050882     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13336,1 руб.     (150,38$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119693703 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Antenna and EM Modeling with MATLAB Antenna Toolbox™ is a textbook on antennas intended for a one semester course. The core philosophy is to introduce the key antenna concepts and follow them up with full-wave modeling and optimization in the MATLAB Antenna Toolbox. Such an approach will enable immediate testing of theoretical concepts by experimenting in software. It also provides the direct path to independent research work. The fundamental families of antennas – dipoles, loops, patches, and traveling wave antennas – are discussed in detail, together with the antenna arrays. Internally, the toolbox uses the Method of Moments (the method of integral equation) for modeling metal and metal-dielectric antennas. Rao-Wilton-Glisson basis functions on triangular facets are used for the metal parts and edge basis functions on tetrahedra are used for the dielectric parts. Accurate semi-analytical calculations of near-field interactions assure good solution accuracy.

Оглавление

Sergey N. Makarov. Antenna and EM Modeling with MATLAB Antenna Toolbox

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

ANTENNA AND EM MODELING WITH MATLAB® ANTENNA TOOLBOX

Preface and Text Organization

List of Notations

About the Companion Website

CHAPTER 1 Antenna Circuit Model. Antenna Matching. Antenna Bandwidth. SECTION 1 LUMPED CIRCUIT MODEL OF AN ANTENNA. ANTENNA INPUT IMPEDANCE

1.1 ANTENNA CIRCUIT MODEL. ANTENNA LOSS

Example 1.1

1.2 MAXIMUM POWER TRANSFER TO (AND FROM) ANTENNA

Example 1.2

Note:

Example 1.3

1.3 ANTENNA EFFICIENCY

Example 1.4

1.4 ANTENNA INPUT IMPEDANCE AND IMPEDANCE MATCHING

1.5 POINT OF INTEREST: INPUT IMPEDANCE OF A DIPOLE ANTENNA AND ITS DEPENDENCE ON DIPOLE LENGTH

Example 1.5

Note:

1.6 BEYOND THE FIRST RESONANCE

1.7 NUMERICAL MODELING

Example 1.6

REFERENCES

PROBLEMS

SECTION 2 ANTENNA WITH TRANSMISSION LINE. ANTENNA REFLECTION COEFFICIENT. ANTENNA MATCHING. VSWR

1.8 ANTENNA REFLECTION COEFFICIENT FOR A LUMPED CIRCUIT

Example 1.7

1.9 ANTENNA REFLECTION COEFFICIENT WITH A FEEDING TRANSMISSION LINE

Example 1.8

1.10 ANTENNA IMPEDANCE TRANSFORMATION. ANTENNA MATCH VIA TRANSMISSION LINE

Example 1.9

1.11 REFLECTION COEFFICIENT EXPRESSED IN DECIBELS AND ANTENNA BANDWIDTH

Note:

Note:

Example 1.10

Note:

1.12 VSWR OF THE ANTENNA

Example 1.11

REFERENCES

PROBLEMS

CHAPTER 2 Receiving Antenna: Received Voltage, Power, and Transmission Coefficient

SECTION 1 ANALYTICAL MODEL FOR THE RECEIVING ANTENNA

2.1 MODEL OF THE RECEIVING ANTENNA AND ITS DISCUSSION

2.2 FINDING CURRENT OF A RECEIVE DIPOLE

2.3 FINDING VOC OF A RECEIVE DIPOLE. INDUCED EMF METHOD. SMALL ANTENNAS RECEIVE MUCH LESS POWER

Note:

Note:

Note:

Example 2.1

2.4 EXPRESSING VOC OF A RECEIVE DIPOLE IN TERMS OF TRANSMITTER PARAMETERS

2.5 VOLTAGE AND POWER TRANSFER FUNCTIONS

Example 2.2

REFERENCES

PROBLEMS

SECTION 2 MODEL OF A TWO‐PORT NETWORK FOR TX/RX ANTENNAS

2.6 IMPEDANCE MATRIX (MUTUAL IMPEDANCE) APPROACH TO THE ANTENNA‐TO‐ANTENNA LINK

2.7 TRANSFER FUNCTION IN TERMS OF VOLTAGE ACROSS THE TX ANTENNA

2.8 SCATTERING MATRIX APPROACH (TRANSMISSION COEFFICIENT)

2.9 POWER TRANSFER FUNCTION

Note:

2.10 MUTUAL IMPEDANCE OF TWO DIPOLES

2.11 TWO‐PORT NETWORK ANTENNA MODEL IN MATLAB ANTENNA TOOLBOX

Example 2.3

Note:

Note:

REFERENCES

PROBLEMS

CHAPTER 3 Antenna Radiation. ECTION 1 MAXWELL EQUATIONS AND BOUNDARY CONDITIONS

3.1 MAXWELL'S EQUATIONS

Note:

3.2 BOUNDARY CONDITIONS. 3.2.1 General Material Interface

3.2.2 Metal–Dielectric (Metal–Air) Interface

Note:

Note:

3.3 ABOUT ELECTROSTATIC, MAGNETOSTATIC, AND DIRECT CURRENT APPROXIMATIONS

3.4 ANALYTICAL SOLUTION TO MAXWELL'S EQUATIONS IN TIME DOMAIN. PLANE WAVES

Note:

Note:

REFERENCES

PROBLEMS

SECTION 2 SOLUTION FOR MAXWELL'S EQUATIONS IN TERMS OF ELECTRIC AND MAGNETIC POTENTIALS

3.5 MAGNETIC VECTOR POTENTIAL AND ELECTRIC SCALAR POTENTIAL

3.6 COMPARISON WITH THE STATIC CASE. COULOMB GAUGE

3.7 EQUATIONS FOR POTENTIALS. LORENTZ GAUGE

Note:

Note:

3.8 WAVE EQUATIONS IN FREQUENCY DOMAIN

Example 3.1

3.9 SOLUTION FOR MAXWELL'S EQUATIONS IN FREQUENCY DOMAIN

Note:

REFERENCES

PROBLEMS

SECTION 3 ANTENNA RADIATION

3.10 RADIATION OF A SMALL UNIFORM CURRENT ELEMENT (lA<<λ) [1]

Example 3.2

3.11 NEAR‐ AND FAR‐FIELD REGIONS FOR A SMALL ANTENNA

Example 3.3

3.12 RADIATION OF A DIPOLE WITH THE SINUSOIDAL CURRENT DISTRIBUTION. 3.12.1 Problem Statement

3.12.2 Solution in the Far Field

Example 3.4

REFERENCES

PROBLEMS

SECTION 4 ANTENNA DIRECTIVITY AND GAIN

3.13 ANTENNA DIRECTIVITY. 3.13.1 Meaning

3.13.2 Definition of Radiation Density

3.13.3 Definition of Radiation Intensity

3.13.4 Definition of Directivity

3.13.5 Radiation Pattern. E‐ and H‐Planes. Polarization

Example 3.5

Example 3.6

3.14 ANTENNA GAIN AND REALIZED GAIN

Note:

3.15 ANTENNA EFFECTIVE APERTURE – RECEIVING ANTENNA AS A POWER COLLECTOR. 3.15.1 General

3.15.2 Relation to Directivity

Example 3.7

Example 3.8

Example 3.9

Example 3.10

3.16 FRIIS TRANSMISSION EQUATION [1]

Example 3.11

REFERENCES

PROBLEMS

CHAPTER 4 Antenna Balun. Antenna Reflector. Method of Images. SECTION 1 ANTENNA BALUN

4.1 DIPOLE FEED IN NUMERICAL SIMULATIONS

4.2 ANTENNA BALUN

4.3 SPLIT‐COAXIAL BALUN

Note:

4.4 DYSON BALUN

4.5 CENTRAL TAP TRANSFORMER AS THE DYSON BALUN

4.6 ANTENNA IMPEDANCE TRANSFORMATION

Note:

Note:

Note:

4.7 A QUICK SOLUTION

4.8 END‐OF‐SECTION STORY

REFERENCES

PROBLEMS

SECTION 2 ANTENNA REFLECTOR

4.9 GROUND PLANE FOR AN ELECTRIC DIPOLE. THE λ/4‐RULE

Note:

Note:

Example 4.1

4.10 METHOD OF IMAGES

Note:

Note:

4.11 EFFECT OF GROUND PLANE ON ANTENNA IMPEDANCE

4.12 EFFECT OF GROUND PLANE ON THE RADIATION PATTERN

Note:

4.13 EXTENSIONS OF THE IMAGE METHOD: CORNER REFLECTOR

4.14 FINITE GROUND PLANE – GEOMETRICAL OPTICS

4.15 FRONT‐TO‐BACK RATIO

Example 4.2

Note:

Note:

NOTES TO PROBLEMS OF THIS SECTION GIVEN BELOW

REFERENCES

PROBLEMS

CHAPTER 5 Dipole Antenna Family: Broadband Antennas that Operate as Dipoles at Low Frequencies. SECTION 1 BROADBAND DIPOLES AND MONOPOLES

5.1 DIPOLE. SUMMARY OF PREVIOUS RESULTS

5.2 MONOPOLE

5.3 BROADBAND (LARGE) DIPOLES

5.4 CANONIC DIPOLES AND THEIR PERFORMANCE

Example 5.1

REFERENCE

PROBLEMS

SECTION 2 BICONICAL, WIDE BLADE, AND VIVALDI ANTENNAS

5.5 BICONICAL “DIPOLE” OR BICONICAL ANTENNA [2]

5.5.1 Structure of the Solution – Transmission Line Approach [2]

Note:

5.5.2 Radiated Fields

5.5.3 Antenna Input Impedance

Note:

Note:

5.5.4 Matching Biconical Antenna to 50 Ω

Example 5.2

5.5.5 Antenna Competition

Note:

5.5.6 Wire Bicone

5.6 WIDE BLADE DIPOLE: TWO ANTENNAS IN ONE

5.7 BLADE DIPOLE WITH ONE RADIATING SLOT – VIVALDI ANTENNA. 5.7.1 Matching to 100 Ω

Note:

5.7.2 Matching to 50 Ω

5.7.3 Other Broadband Designs

REFERENCES

PROBLEM

CHAPTER 6 Loop Antennas. SECTION 1 LOOP ANTENNA VS. DIPOLE ANTENNA

6.1 CONCEPT

Note:

Note:

Note:

Example 6.1

6.2 ANALYTICAL RESULTS

Example 6.2

Note:

6.3 FULL‐WAVE SIMULATION RESULTS

6.3.1 Antenna Impedance

6.3.2 Radiation Pattern – Note of Caution

Note:

6.4 WHY LOOP ANTENNA?

REFERENCES

PROBLEMS

CHAPTER 7 Small Antennas. SECTION 1 FUNDAMENTAL LIMITS ON ANTENNA BANDWIDTH

7.1 ANTENNA SIZE ESTIMATE

7.2 BANDWIDTH OF A SMALL ANTENNA. 7.2.1 Small Antennas

7.2.2 Test Circuit for a Small Antenna

7.2.3 Small Antenna Bandwidth Definition [1, 2]

Note:

Note:

Note:

7.2.4 Analytical Approximation of the Small Antenna Bandwidth [1]

7.3 FUNDAMENTAL LIMITS ON THE BANDWIDTH OF A SMALL ANTENNA [1–6] 7.3.1 Antenna Q‐Factor

7.3.2 Relation Between Small Antenna Q‐Factor and Small Antenna Bandwidth

Example 7.1

Example 7.2

7.4 ONE HIDDEN PROBLEM WITH A SMALL ANTENNA

REFERENCES

PROBLEMS

SECTION 2 PRACTICAL ANTENNA MATCHING AND TUNING FOR A PREDEFINED (50 Ω) IMPEDANCE

7.5 DOUBLE TUNING – INDUCTIVE (SMALL LOOP) ANTENNA. 7.5.1 Problem Statement [1, 2]

7.5.2 Double Tuning

7.5.3 Solution

Example 7.3

7.5.4 Single Tuning

Example 7.4

7.6 DOUBLE TUNING – CAPACITIVE (SMALL DIPOLE OR MONOPOLE) ANTENNA. 7.6.1 Double Tuning [2]

Example 7.5

7.6.2 Single Tuning

REFERENCES

PROBLEMS

CHAPTER 8 Patch and PIFA Antennas. SECTION 1 PATCH ANTENNAS

8.1 CONCEPT

8.2 FIELDS

Note:

8.3 CAD FORMULAS FOR PATCH ANTENNA

Example 8.1

8.4 CAD FORMULAS FOR THE PATCH ANTENNA EFFICIENCY

Note:

Example 8.2

8.5 PATCH ANTENNA EXAMPLE: CROSS‐POLARIZATION AND NEAR FIELDS

8.5.1 Geometry

8.5.2 Antenna Mesh

8.5.3 Input Impedance

8.5.4 Radiation Pattern – Total Directivity and Gain

RADIATION PATTERN – CO‐POLAR AND CROSS‐POLAR COMPONENTS. POLARIZATION ISOLATION

Note:

8.5.5 Near Fields

8.6 PATCH ANTENNA FAMILY

REFERENCES

PROBLEMS

SECTION 2 PLANAR INVERTED F (PIFA) ANTENNA. BANDWIDTH ESTIMATIONS

8.7 CONCEPT

8.8 PIFA TYPES. BEHAVIOR OF INPUT IMPEDANCE. 8.8.1 Transmission Line Model

8.8.2 PIFA

8.8.3 PIFAI or PILA

8.8.4 PIFAII

8.9 PIFA MODELING

8.10 BANDWIDTH RESULTS

8.11 COMPARISON WITH OTHER DATA

Example 8.3

Note:

8.12 SUMMARY

REFERENCES

PROBLEMS

CHAPTER 9 Traveling Wave Antennas. SECTION 1 LONG WIRE ANTENNA AND YAGI‐UDA ANTENNA

9.1 CONCEPT

9.2 FEATURES AND MODELING

Example 9.1

9.3 MODELING WITH ANTENNA TOOLBOX

Example 9.2

9.4 YAGI‐UDA ANTENNA

9.5 TRAVELING WAVE FORMATION ALONG YAGI‐UDA ANTENNA

REFERENCES

PROBLEMS

SECTION 2 HELICAL AND SPIRAL ANTENNAS

9.6 HELICAL ANTENNA: NORMAL MODE OF OPERATION

9.7 HELICAL ANTENNA: AXIAL MODE OF OPERATION

9.8 MODELING WITH ANTENNA TOOLBOX

9.9 SPIRAL ANTENNA: ARCHIMEDEAN SPIRAL

Example 9.3

9.10 MODELING WITH ANTENNA TOOLBOX

9.11 PRINCIPLE OF OPERATION

9.12 EQUIANGULAR SPIRAL ANTENNA

REFERENCES

PROBLEMS

CHAPTER 10 Antenna Designer Including Circularly Polarized Antennas. SECTION 1 FAST ANALYSIS AND DESIGN OF INDIVIDUAL ANTENNAS

10.1 ANTENNA DESIGNER

10.2 USING PRE‐OPTIMIZED ANTENNA GEOMETRY

10.3 PERFORMING GEOMETRY OPTIMIZATION ON THE FLY

10.4 DESIGN EXAMPLE

Example 10.1

10.5 ANTENNA PRESELECTION FOR A GIVEN TASK

REFERENCE

PROBLEMS

SECTION 2 MEANING OF CIRCULAR POLARIZATION AND PROPER ANTENNA ORIENTATION

10.6 ANTENNA PHASE SHIFT OR DELAY

10.7 CIRCULARLY POLARIZED RX/TX ANTENNAS AND THEIR REQUIRED ORIENTATIONS IN SPACE

Example 9.2

10.8 SEPARATION OF RADIATED FIELD INTO TWO CIRCULAR POLARIZATION COMPONENTS [1–3]

10.9 QUANTITATIVE MEASURES OF CIRCULAR POLARIZATION

10.10 CIRCULARLY POLARIZED TURNSTILE ANTENNA

10.11 CIRCULARLY POLARIZED PATCH ANTENNA

REFERENCES

PROBLEMS

CHAPTER 11 Antenna Arrays. SECTION 1 ARRAY TYPES. ARRAY FACTOR. CONCEPT OF A SCANNING ARRAY

11.1 ARRAY TYPES

11.2 BASIC ARRAY OF TWO DIPOLES. 11.2.1 Array of Two Dipoles

11.2.2 Array Factor and Pattern Multiplication Rule

Note:

11.3 ARRAY FACTOR FOR IDENTICAL RADIATORS. 11.3.1 Array Factor of the Array of N Dipoles

11.3.2 Gain of the Array Factor

11.3.3 Sidelobes

11.3.4 Grating Lobes

Example 11.1

11.4 ARRAY RADIATED POWER AND ARRAY DIRECTIVITY

Example 11.2

11.5 DIRECTIVITY OF THE ARRAY AND DIRECTIVITY OF THE ARRAY FACTOR

11.6 CONCEPT OF A SCANNING ARRAY. 11.6.1 Progressive Phase Shift(s)

11.6.2 Scanning the Main Beam

REFERENCES

PROBLEMS

SECTION 2 LINEAR ARRAYS

11.7 BROADSIDE LINEAR ARRAY

Example 11.3

Example 11.4

11.8 ARRAY AMPLITUDE TAPER

11.9 BINOMIAL BROADSIDE ARRAY

Example 11.5

11.10 DOLPH‐CHEBYSHEV BROADSIDE ARRAY

Example 11.6

11.11 ENDFIRE LINEAR ARRAY

Example 11.7

Example 11.8

11.12 HANSEN‐WOODYARD ENDFIRE ARRAY

11.13 LINEAR ARRAY FOR ARBITRARY SCAN ANGLES

11.14 SUPERDIRECTIVITY

Example 11.9

REFERENCES

PROBLEMS

SECTION 3 PLANAR ARRAYS

11.15 THEORETICAL GAIN PATTERN OF A FINITE 2D ARRAY. 11.15.1 Gain of the Main Beam

11.15.2 Array Factor

11.15.3 Pattern of an Individual Element

11.15.4 Array Directivity

11.15.5 Application Example

11.15.6 Comparison Between Theory and Numerical Simulations

Example 11.10

11.16 DESIGN OF SMALL 2D ARRAYS: IMPEDANCE BANDWIDTH IMPROVEMENT AND DIRECTIVITY

11.16.1 Unit Cell Structure and Geometry Parameters

11.16.2 Simulation Setup and Impedance Results for a Unit Cell Radiator

11.16.3 A 2 × 1 Array

11.16.4 The 3 × 1, 2 × 2, 4 × 1, 3 × 2, 3 × 3, 4 × 2, 4 × 4 Arrays

11.16.5 Peak Broadside Directivity – Theoretical and Simulation Results

11.17 CORPORATE SERIES FEED – WILKINSON POWER DIVIDERS

11.18 CORPORATE (PARALLEL) FEED

REFERENCES

PROBLEMS

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

SECOND EDITION

.....

Emphasize that the numerical solution uses an infinitesimally thin feed gap for the dipole antenna. An extension to a gap of finite thickness is possible.

We have already mentioned that, if a strip or blade dipole of width t is considered, then a twice as narrow cylindrical dipole provides the same equivalent capacitance of a dipole wing per unit length [3]. For example, the blade dipole of 8 mm in width and the cylindrical dipole of 4 mm in diameter should perform quite similarly.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Antenna and EM Modeling with MATLAB Antenna Toolbox
Подняться наверх