Rank-Based Methods for Shrinkage and Selection

Rank-Based Methods for Shrinkage and Selection
Авторы книги: id книги: 2351240     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 12561,2 руб.     (125,7$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119625421 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning

Оглавление

A. K. Md. Ehsanes Saleh. Rank-Based Methods for Shrinkage and Selection

Rank-Based Methods for Shrinkage and Selection. With Application to Machine Learning

Contents in Brief

Contents

List of Illustrations

List of Tables

Guide

Pages

List of Figures

List of Tables

Foreword

Preface

1 Introduction to Rank-based Regression. 1.1 Introduction

1.2 Robustness of the Median. 1.2.1 Mean vs. Median

1.2.2 Breakdown Point

1.2.3 Order and Rank Statistics

1.3 Simple Linear Regression

1.3.1 Least Squares Estimator (LSE)

1.3.2 Theil’s Estimator

1.3.3 Belgium Telephone Data Set

1.3.4 Estimation and Standard Error Comparison

1.4 Outliers and their Detection

1.4.1 Outlier Detection

1.5 Motivation for Rank-based Methods. 1.5.1 Effect of a Single Outlier

1.5.2 Using Rank for the Location Model

1.5.3 Using Rank for the Slope

1.6 The Rank Dispersion Function

1.6.1 Ranking and Scoring Details

1.6.2 Detailed Procedure for R-estimation

1.7 Shrinkage Estimation and Subset Selection

1.7.1 Multiple Linear Regression using Rank

1.7.2 Penalty Functions

1.7.3 Shrinkage Estimation

1.7.4 Subset Selection

1.7.5 Blended Approaches

1.8 Summary

1.9 Problems

Notes

2 Characteristics of Rank-based Penalty Estimators. 2.1 Introduction

2.2 Motivation for Penalty Estimators

2.3 Multivariate Linear Regression. 2.3.1 Multivariate Least Squares Estimation

2.3.2 Multivariate R-estimation

2.3.3 Multicollinearity

2.4 Ridge Regression

2.4.1 Ridge Applied to Least Squares Estimation

2.4.2 Ridge Applied to Rank Estimation

2.5 Example: Swiss Fertility Data Set

2.5.1 Estimation and Standard Errors

2.5.2 Parameter Variance using Bootstrap

2.5.3 Reducing Variance using Ridge

2.5.4 Ridge Traces

2.6 Selection of Ridge Parameter λ2

2.6.1 Quadratic Risk

2.6.2 K-fold Cross-validation Scheme

2.7 LASSO and aLASSO. 2.7.1 Subset Selection

2.7.2 Least Squares with LASSO

2.7.3 The Adaptive LASSO and its Geometric Interpretation

2.7.4 R-estimation with LASSO and aLASSO

2.7.5 Oracle Properties

2.8 Elastic Net (Enet)

2.8.1 Naive Enet

2.8.2 Standard Enet

2.8.3 Enet in Machine Learning

2.9 Example: Diabetes Data Set

2.9.1 Model Building with R-aEnet

2.9.2 MSE vs. MAE

2.9.3 Model Building with LS-Enet

2.10 Summary

2.11 Problems

Notes

3 Location and Simple Linear Models

3.1 Introduction

3.2 Location Estimators and Testing. 3.2.1 Unrestricted R-estimator of θ

3.2.2 Restricted R-estimator of θ

3.3 Shrinkage R-estimators of Location

3.3.1 Overview of Shrinkage R-estimators of θ

3.3.2 Derivation of the Ridge-type R-estimator

3.3.3 Derivation of the LASSO-type R-estimator

3.3.4 General Shrinkage R-estimators of θ

3.4 Ridge-type R-estimator of θ

3.5 Preliminary Test R-estimator of θ

3.5.1 Optimum Level of Significance of PTRE

3.6 Saleh-type R-estimators

3.6.1 Hard-Threshold R-estimator of θ

3.6.2 Saleh-type R-estimator of θ

3.6.3 Positive-rule Saleh-type (LASSO-type) R-estimator of θ

3.6.4 Elastic Net-type R-estimator of θ

3.7 Comparative Study of the R-estimators of Location

3.8 Simple Linear Model

3.8.1 Restricted R-estimator of Slope

3.8.2 Shrinkage R-estimator of Slope

3.8.3 Ridge-type R-estimation of Slope

3.8.4 Hard Threshold R-estimator of Slope

3.8.5 Saleh-type R-estimator of Slope

3.8.6 Positive-rule Saleh-type (LASSO-type) R-estimator of Slope

3.8.7 The Adaptive LASSO (aLASSO-type) R-estimator

3.8.8 nEnet-type R-estimator of Slope

3.8.9 Comparative Study of R-estimators of Slope

3.9 Summary

3.10 Problems

Notes

4 Analysis of Variance (ANOVA) 4.1 Introduction

4.2 Model, Estimation and Tests

4.3 Overview of Multiple Location Models

4.3.1 Example: Corn Fertilizers

4.3.2 One-way ANOVA

4.3.3 Effect of Variance on Shrinkage Estimators

4.3.4 Shrinkage Estimators for Multiple Location

4.4 Unrestricted R-estimator

4.5 Test of Significance

4.6 Restricted R-estimator

4.7 Shrinkage Estimators

4.7.1 Preliminary Test R-estimator

4.7.2 The Stein–Saleh-type R-estimator

4.7.3 The Positive-rule Stein–Saleh-type R-estimator

4.7.4 The Ridge-type R-estimator

4.8 Subset Selection Penalty R-estimators

4.8.1 Preliminary Test Subset Selector R-estimator

4.8.2 Saleh-type R-estimator

4.8.3 Positive-rule Saleh Subset Selector (PRSS)

4.8.4 The Adaptive LASSO (aLASSO)

4.8.5 Elastic-net-type R-estimator

4.9 Comparison of the R-estimators

4.9.1 Comparison of URE and RRE

4.9.2 Comparison of URE and Stein–Saleh-type R-estimators

4.9.3 Comparison of URE and Ridge-type R-estimators

4.9.4 Comparison of URE and PTSSRE

4.9.5 Comparison of LASSO-type and Ridge-type R-estimators

4.9.6 Comparison of URE, RRE and LASSO

4.9.7 Comparison of LASSO with PTRE

4.9.8 Comparison of LASSO with SSRE

4.9.9 Comparison of LASSO with PRSSRE

4.9.10 Comparison of nEnetRE with URE

4.9.11 Comparison of nEnetRE with RRE

4.9.12 Comparison of nEnetRE with HTRE

4.9.13 Comparison of nEnetRE with SSRE

4.9.14 Comparison of Ridge-type vs. nEnetRE

4.10 Summary

4.11 Problems

Notes

5 Seemingly Unrelated Simple Linear Models. 5.1 Introduction

5.1.1 Problem Formulation

5.2 Signed and Signed Rank Estimators of Parameters

5.2.1 General Shrinkage R-estimator of β

5.2.2 Ridge-type R-estimator of β

5.2.3 Preliminary Test R-estimator of β

5.3 Stein–Saleh-type R-estimator of β

5.3.1 Positive-rule Stein–Saleh R-estimators of β

5.4 Saleh-type R-estimator of β

5.4.1 LASSO-type R-estimator of the β

5.5 Elastic-net-type R-estimators

5.6 R-estimator of Intercept When Slope Has Sparse Subset

5.6.1 General Shrinkage R-estimator of Intercept

5.6.2 Ridge-type R-estimator of θ

5.6.3 Preliminary Test R-estimators of θ

5.7 Stein–Saleh-type R-estimator of θ

5.7.1 Positive-rule Stein–Saleh-type R-estimator of θ

5.7.2 LASSO-type R-estimator of θ

5.8 Summary

5.8.1 Problems

6 Multiple Linear Regression Models. 6.1 Introduction

6.2 Multiple Linear Model and R-estimation

6.3 Model Sparsity and Detection

6.4 General Shrinkage R-estimator of β

6.4.1 Preliminary Test R-estimators

6.4.2 Stein–Saleh-type R-estimator

6.4.3 Positive-rule Stein–Saleh-type R-estimator

6.5 Subset Selectors. 6.5.1 Preliminary Test Subset Selector R-estimator

6.5.2 Stein–Saleh-type R-estimator

6.5.3 Positive-rule Stein–Saleh-type R-estimator (LASSO-type)

6.5.4 Ridge-type Subset Selector

6.5.5 Elastic Net-type R-estimator

6.6 Adaptive LASSO. 6.6.1 Introduction

6.6.2 Asymptotics for LASSO-type R-estimator

6.6.3 Oracle Property of aLASSO

6.7 Summary

6.8 Problems

7 Partially Linear Multiple Regression Model. 7.1 Introduction

7.2 Rank Estimation in the PLM

7.2.1 Penalty R-estimators

7.2.2 Preliminary Test and Stein–Saleh-type R-estimator

7.3 ADB and ADL2-risk

7.4 ADL2-risk Comparisons

7.4.0.1 Ridge vs. others

7.5 Summary: L2-risk Efficiencies

7.6 Problems

8 Liu Regression Models. 8.1 Introduction

8.2 Linear Unified (Liu) Estimator

8.2.1 Liu-type R-estimator

8.3 Shrinkage Liu-type R-estimators

8.4 Asymptotic Distributional Risk

8.5 Asymptotic Distributional Risk Comparisons

8.5.1 Comparison of SSLRE and PTLRE

8.5.2 Comparison of PRSLRE and PTLRE

8.5.3 Comparison of PRLRE and SSLRE

8.5.4 Comparison of Liu-Type Rank Estimators With Counterparts

8.6 Estimation of d

8.7 Diabetes Data Analysis

8.7.1 Penalty Estimators

8.7.2 Performance Analysis

8.8 Summary

8.9 Problems

9 Autoregressive Models. 9.1 Introduction

9.2 R-estimation of ρ for the AR(p)-Model

9.3 LASSO, Ridge, Preliminary Test and Stein–Saleh-type R-estimators

9.4 Asymptotic Distributional L2-risk

9.5 Asymptotic Distributional L2-risk Analysis

9.5.1 Comparison of Unrestricted vs. Restricted R-estimators

9.5.2 Comparison of Unrestricted vs. Preliminary Test R-estimator

9.5.3 Comparison of Unrestricted vs. Stein–Saleh-type R-estimators

9.5.4 Comparison of the Preliminary Test vs. Stein–Saleh-type R-estimators

9.6 Summary

9.7 Problems

10 High-Dimensional Models. 10.1 Introduction

10.2 Identifiability of β* and Projection

10.3 Parsimonious Model Selection

10.4 Some Notation and Separation

10.4.1 Special Matrices

10.4.2 Steps Towards Estimators

Remark

10.4.3 Post-selection Ridge Estimation of βS1* and βS2*

10.4.4 Post-selection Ridge R-estimators for βS1* and βS2*

10.5 Post-selection Shrinkage R-estimators

10.6 Asymptotic Properties of the Ridge R-estimators

10.7 Asymptotic Distributional L2-Risk Properties

10.8 Asymptotic Distributional Risk Efficiency

10.9 Summary

10.10 Problems

11 Rank-based Logistic Regression. 11.1 Introduction

11.2 Data Science and Machine Learning. 11.2.1 What is Robust Data Science?

11.2.2 What is Robust Machine Learning?

11.3 Logistic Regression

11.3.1 Log-likelihood Setup

11.3.2 Motivation for Rank-based Logistic Methods

11.3.3 Nonlinear Dispersion Function

11.4 Application to Machine Learning

11.4.1 Example: Motor Trend Cars

11.5 Penalized Logistic Regression

11.5.1 Log-likelihood Expressions

11.5.2 Rank-based Expressions

11.5.3 Support Vector Machines

11.5.4 Example: Circular Data

11.6 Example: Titanic Data Set

11.6.1 Exploratory Data Analysis

11.6.2 RLR vs. LLR vs. SVM

11.6.3 Shrinkage and Selection

11.7 Summary

11.8 Problems

Notes

12 Rank-based Neural Networks. 12.1 Introduction

12.2 Set-up for Neural Networks

12.3 Implementing Neural Networks

12.3.1 Basic Computational Unit

12.3.2 Activation Functions

12.3.3 Four-layer Neural Network

12.4 Gradient Descent with Momentum. 12.4.1 Gradient Descent

12.4.2 Momentum

12.5 Back Propagation Example

12.5.1 Forward Propagation

12.5.2 Back Propagation

12.5.3 Dispersion Function Gradients

12.5.4 RNN Algorithm

12.6 Accuracy Metrics

12.7 Example: Circular Data Set

12.8 Image Recognition: Cats vs. Dogs

12.8.1 Binary Image Classification

12.8.2 Image Preparation

12.8.3 Over-fitting and Under-fitting

12.8.4 Comparison of LNN vs. RNN

12.9 Image Recognition: MNIST Data Set

12.10 Summary

12.11 Problems

Notes

Bibliography

Author Index

Subject Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

A. K. Md. Ehsanes Saleh Carleton University, Ottawa, Canada

Mohammad Arashi Ferdowsi University of Mashhad, Mashhad, Iran

.....

4.5 Hard threshold and positive-rule Stein–Saleh traces for ANOVA table data.

8.1 Left: the qq-plot for the diabates data sets; Right: the distribution of the residuals.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Rank-Based Methods for Shrinkage and Selection
Подняться наверх