Rank-Based Methods for Shrinkage and Selection
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
A. K. Md. Ehsanes Saleh. Rank-Based Methods for Shrinkage and Selection
Rank-Based Methods for Shrinkage and Selection. With Application to Machine Learning
Contents in Brief
Contents
List of Illustrations
List of Tables
Guide
Pages
List of Figures
List of Tables
Foreword
Preface
1 Introduction to Rank-based Regression. 1.1 Introduction
1.2 Robustness of the Median. 1.2.1 Mean vs. Median
1.2.2 Breakdown Point
1.2.3 Order and Rank Statistics
1.3 Simple Linear Regression
1.3.1 Least Squares Estimator (LSE)
1.3.2 Theil’s Estimator
1.3.3 Belgium Telephone Data Set
1.3.4 Estimation and Standard Error Comparison
1.4 Outliers and their Detection
1.4.1 Outlier Detection
1.5 Motivation for Rank-based Methods. 1.5.1 Effect of a Single Outlier
1.5.2 Using Rank for the Location Model
1.5.3 Using Rank for the Slope
1.6 The Rank Dispersion Function
1.6.1 Ranking and Scoring Details
1.6.2 Detailed Procedure for R-estimation
1.7 Shrinkage Estimation and Subset Selection
1.7.1 Multiple Linear Regression using Rank
1.7.2 Penalty Functions
1.7.3 Shrinkage Estimation
1.7.4 Subset Selection
1.7.5 Blended Approaches
1.8 Summary
1.9 Problems
Notes
2 Characteristics of Rank-based Penalty Estimators. 2.1 Introduction
2.2 Motivation for Penalty Estimators
2.3 Multivariate Linear Regression. 2.3.1 Multivariate Least Squares Estimation
2.3.2 Multivariate R-estimation
2.3.3 Multicollinearity
2.4 Ridge Regression
2.4.1 Ridge Applied to Least Squares Estimation
2.4.2 Ridge Applied to Rank Estimation
2.5 Example: Swiss Fertility Data Set
2.5.1 Estimation and Standard Errors
2.5.2 Parameter Variance using Bootstrap
2.5.3 Reducing Variance using Ridge
2.5.4 Ridge Traces
2.6 Selection of Ridge Parameter λ2
2.6.1 Quadratic Risk
2.6.2 K-fold Cross-validation Scheme
2.7 LASSO and aLASSO. 2.7.1 Subset Selection
2.7.2 Least Squares with LASSO
2.7.3 The Adaptive LASSO and its Geometric Interpretation
2.7.4 R-estimation with LASSO and aLASSO
2.7.5 Oracle Properties
2.8 Elastic Net (Enet)
2.8.1 Naive Enet
2.8.2 Standard Enet
2.8.3 Enet in Machine Learning
2.9 Example: Diabetes Data Set
2.9.1 Model Building with R-aEnet
2.9.2 MSE vs. MAE
2.9.3 Model Building with LS-Enet
2.10 Summary
2.11 Problems
Notes
3 Location and Simple Linear Models
3.1 Introduction
3.2 Location Estimators and Testing. 3.2.1 Unrestricted R-estimator of θ
3.2.2 Restricted R-estimator of θ
3.3 Shrinkage R-estimators of Location
3.3.1 Overview of Shrinkage R-estimators of θ
3.3.2 Derivation of the Ridge-type R-estimator
3.3.3 Derivation of the LASSO-type R-estimator
3.3.4 General Shrinkage R-estimators of θ
3.4 Ridge-type R-estimator of θ
3.5 Preliminary Test R-estimator of θ
3.5.1 Optimum Level of Significance of PTRE
3.6 Saleh-type R-estimators
3.6.1 Hard-Threshold R-estimator of θ
3.6.2 Saleh-type R-estimator of θ
3.6.3 Positive-rule Saleh-type (LASSO-type) R-estimator of θ
3.6.4 Elastic Net-type R-estimator of θ
3.7 Comparative Study of the R-estimators of Location
3.8 Simple Linear Model
3.8.1 Restricted R-estimator of Slope
3.8.2 Shrinkage R-estimator of Slope
3.8.3 Ridge-type R-estimation of Slope
3.8.4 Hard Threshold R-estimator of Slope
3.8.5 Saleh-type R-estimator of Slope
3.8.6 Positive-rule Saleh-type (LASSO-type) R-estimator of Slope
3.8.7 The Adaptive LASSO (aLASSO-type) R-estimator
3.8.8 nEnet-type R-estimator of Slope
3.8.9 Comparative Study of R-estimators of Slope
3.9 Summary
3.10 Problems
Notes
4 Analysis of Variance (ANOVA) 4.1 Introduction
4.2 Model, Estimation and Tests
4.3 Overview of Multiple Location Models
4.3.1 Example: Corn Fertilizers
4.3.2 One-way ANOVA
4.3.3 Effect of Variance on Shrinkage Estimators
4.3.4 Shrinkage Estimators for Multiple Location
4.4 Unrestricted R-estimator
4.5 Test of Significance
4.6 Restricted R-estimator
4.7 Shrinkage Estimators
4.7.1 Preliminary Test R-estimator
4.7.2 The Stein–Saleh-type R-estimator
4.7.3 The Positive-rule Stein–Saleh-type R-estimator
4.7.4 The Ridge-type R-estimator
4.8 Subset Selection Penalty R-estimators
4.8.1 Preliminary Test Subset Selector R-estimator
4.8.2 Saleh-type R-estimator
4.8.3 Positive-rule Saleh Subset Selector (PRSS)
4.8.4 The Adaptive LASSO (aLASSO)
4.8.5 Elastic-net-type R-estimator
4.9 Comparison of the R-estimators
4.9.1 Comparison of URE and RRE
4.9.2 Comparison of URE and Stein–Saleh-type R-estimators
4.9.3 Comparison of URE and Ridge-type R-estimators
4.9.4 Comparison of URE and PTSSRE
4.9.5 Comparison of LASSO-type and Ridge-type R-estimators
4.9.6 Comparison of URE, RRE and LASSO
4.9.7 Comparison of LASSO with PTRE
4.9.8 Comparison of LASSO with SSRE
4.9.9 Comparison of LASSO with PRSSRE
4.9.10 Comparison of nEnetRE with URE
4.9.11 Comparison of nEnetRE with RRE
4.9.12 Comparison of nEnetRE with HTRE
4.9.13 Comparison of nEnetRE with SSRE
4.9.14 Comparison of Ridge-type vs. nEnetRE
4.10 Summary
4.11 Problems
Notes
5 Seemingly Unrelated Simple Linear Models. 5.1 Introduction
5.1.1 Problem Formulation
5.2 Signed and Signed Rank Estimators of Parameters
5.2.1 General Shrinkage R-estimator of β
5.2.2 Ridge-type R-estimator of β
5.2.3 Preliminary Test R-estimator of β
5.3 Stein–Saleh-type R-estimator of β
5.3.1 Positive-rule Stein–Saleh R-estimators of β
5.4 Saleh-type R-estimator of β
5.4.1 LASSO-type R-estimator of the β
5.5 Elastic-net-type R-estimators
5.6 R-estimator of Intercept When Slope Has Sparse Subset
5.6.1 General Shrinkage R-estimator of Intercept
5.6.2 Ridge-type R-estimator of θ
5.6.3 Preliminary Test R-estimators of θ
5.7 Stein–Saleh-type R-estimator of θ
5.7.1 Positive-rule Stein–Saleh-type R-estimator of θ
5.7.2 LASSO-type R-estimator of θ
5.8 Summary
5.8.1 Problems
6 Multiple Linear Regression Models. 6.1 Introduction
6.2 Multiple Linear Model and R-estimation
6.3 Model Sparsity and Detection
6.4 General Shrinkage R-estimator of β
6.4.1 Preliminary Test R-estimators
6.4.2 Stein–Saleh-type R-estimator
6.4.3 Positive-rule Stein–Saleh-type R-estimator
6.5 Subset Selectors. 6.5.1 Preliminary Test Subset Selector R-estimator
6.5.2 Stein–Saleh-type R-estimator
6.5.3 Positive-rule Stein–Saleh-type R-estimator (LASSO-type)
6.5.4 Ridge-type Subset Selector
6.5.5 Elastic Net-type R-estimator
6.6 Adaptive LASSO. 6.6.1 Introduction
6.6.2 Asymptotics for LASSO-type R-estimator
6.6.3 Oracle Property of aLASSO
6.7 Summary
6.8 Problems
7 Partially Linear Multiple Regression Model. 7.1 Introduction
7.2 Rank Estimation in the PLM
7.2.1 Penalty R-estimators
7.2.2 Preliminary Test and Stein–Saleh-type R-estimator
7.3 ADB and ADL2-risk
7.4 ADL2-risk Comparisons
7.4.0.1 Ridge vs. others
7.5 Summary: L2-risk Efficiencies
7.6 Problems
8 Liu Regression Models. 8.1 Introduction
8.2 Linear Unified (Liu) Estimator
8.2.1 Liu-type R-estimator
8.3 Shrinkage Liu-type R-estimators
8.4 Asymptotic Distributional Risk
8.5 Asymptotic Distributional Risk Comparisons
8.5.1 Comparison of SSLRE and PTLRE
8.5.2 Comparison of PRSLRE and PTLRE
8.5.3 Comparison of PRLRE and SSLRE
8.5.4 Comparison of Liu-Type Rank Estimators With Counterparts
8.6 Estimation of d
8.7 Diabetes Data Analysis
8.7.1 Penalty Estimators
8.7.2 Performance Analysis
8.8 Summary
8.9 Problems
9 Autoregressive Models. 9.1 Introduction
9.2 R-estimation of ρ for the AR(p)-Model
9.3 LASSO, Ridge, Preliminary Test and Stein–Saleh-type R-estimators
9.4 Asymptotic Distributional L2-risk
9.5 Asymptotic Distributional L2-risk Analysis
9.5.1 Comparison of Unrestricted vs. Restricted R-estimators
9.5.2 Comparison of Unrestricted vs. Preliminary Test R-estimator
9.5.3 Comparison of Unrestricted vs. Stein–Saleh-type R-estimators
9.5.4 Comparison of the Preliminary Test vs. Stein–Saleh-type R-estimators
9.6 Summary
9.7 Problems
10 High-Dimensional Models. 10.1 Introduction
10.2 Identifiability of β* and Projection
10.3 Parsimonious Model Selection
10.4 Some Notation and Separation
10.4.1 Special Matrices
10.4.2 Steps Towards Estimators
Remark
10.4.3 Post-selection Ridge Estimation of βS1* and βS2*
10.4.4 Post-selection Ridge R-estimators for βS1* and βS2*
10.5 Post-selection Shrinkage R-estimators
10.6 Asymptotic Properties of the Ridge R-estimators
10.7 Asymptotic Distributional L2-Risk Properties
10.8 Asymptotic Distributional Risk Efficiency
10.9 Summary
10.10 Problems
11 Rank-based Logistic Regression. 11.1 Introduction
11.2 Data Science and Machine Learning. 11.2.1 What is Robust Data Science?
11.2.2 What is Robust Machine Learning?
11.3 Logistic Regression
11.3.1 Log-likelihood Setup
11.3.2 Motivation for Rank-based Logistic Methods
11.3.3 Nonlinear Dispersion Function
11.4 Application to Machine Learning
11.4.1 Example: Motor Trend Cars
11.5 Penalized Logistic Regression
11.5.1 Log-likelihood Expressions
11.5.2 Rank-based Expressions
11.5.3 Support Vector Machines
11.5.4 Example: Circular Data
11.6 Example: Titanic Data Set
11.6.1 Exploratory Data Analysis
11.6.2 RLR vs. LLR vs. SVM
11.6.3 Shrinkage and Selection
11.7 Summary
11.8 Problems
Notes
12 Rank-based Neural Networks. 12.1 Introduction
12.2 Set-up for Neural Networks
12.3 Implementing Neural Networks
12.3.1 Basic Computational Unit
12.3.2 Activation Functions
12.3.3 Four-layer Neural Network
12.4 Gradient Descent with Momentum. 12.4.1 Gradient Descent
12.4.2 Momentum
12.5 Back Propagation Example
12.5.1 Forward Propagation
12.5.2 Back Propagation
12.5.3 Dispersion Function Gradients
12.5.4 RNN Algorithm
12.6 Accuracy Metrics
12.7 Example: Circular Data Set
12.8 Image Recognition: Cats vs. Dogs
12.8.1 Binary Image Classification
12.8.2 Image Preparation
12.8.3 Over-fitting and Under-fitting
12.8.4 Comparison of LNN vs. RNN
12.9 Image Recognition: MNIST Data Set
12.10 Summary
12.11 Problems
Notes
Bibliography
Author Index
Subject Index
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
A. K. Md. Ehsanes Saleh Carleton University, Ottawa, Canada
Mohammad Arashi Ferdowsi University of Mashhad, Mashhad, Iran
.....
4.5 Hard threshold and positive-rule Stein–Saleh traces for ANOVA table data.
8.1 Left: the qq-plot for the diabates data sets; Right: the distribution of the residuals.
.....