Colour Measurement and Mixture

Colour Measurement and Mixture
Автор книги: id книги: 790973     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 0 руб.     (0$) Читать книгу Скачать бесплатно Купить бумажную книгу Электронная книга Жанр: Зарубежная классика Правообладатель и/или издательство: Public Domain Дата добавления в каталог КнигаЛит: Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Оглавление

Abney William de Wiveleslie Sir. Colour Measurement and Mixture

PREFACE

CHAPTER I

CHAPTER II

CHAPTER III

CHAPTER IV

CHAPTER V

CHAPTER VI

CHAPTER VII

CHAPTER VIII

CHAPTER IX

CHAPTER X

CHAPTER XI

CHAPTER XII

CHAPTER XIII

CHAPTER XIV

CHAPTER XV

CHAPTER XVI

Отрывок из книги

There is nothing, perhaps, in our everyday life which appeals more to the mind than colour, yet so accustomed are the generality of mankind to its influence that but few stop to inquire the "why and wherefore" of its existence, or its cause. To those few, however, there is a source of endless and boundless enjoyment in its study; for in the realms of physical and physiological science there is perhaps no other subject in which experiments give results so fascinating and often so beautiful. Although its serious study must be undertaken with a clear mind, a good eye, and a fair supply of patience, yet a general idea of the subject may be grasped by those who are possessed of but ordinary intelligence.

Colour phenomena are encountered nearly every day of one's life, and the fact that they are so frequently met with, prevents that attention to them, or even their remark. Who amongst us, for instance, has noticed the existence of what are called positive and negative after images, after looking at some strongly illuminated object, or would have gauged the fact that a certain portion of the nervous system can be fatigued by a colour, and give rise to images of its complementary, had not an enterprising advertiser, who manufactures a household necessary, drawn attention to it in a manner that could not be misunderstood.

.....

The drawback to the use of prisms is that the dispersion of the red end of the spectrum is much less than that of the blue end, and is apt to give a false impression as to the relative luminosities of, and length of spectrum occupied by, the different colours. In some text-books it is told us that the diffraction grating gives us a dispersion which is in exact relation to the wave-length. This is not true, however, as it can only give one small portion in such relationship, and that only when it is specially set for the purpose. The subject of diffraction is one into which it would be foreign to our purpose to wander. We may say that for measures such as we shall make, it is handier to employ prisms, as the prismatic spectrum is more intense than the diffraction spectrum. This can be readily understood when we consider the subject even superficially. If we throw a beam of light on a grating which contains perhaps some 14,000 parallel lines in the space of one inch in width, the lines being ruled on a plane and bright metallic surface, and receive the reflected beam on a screen, the appearance that is presented is a white central spot, together with six or seven spectra of gradually diminishing brightness on each side of it, all except the first pair overlapping one another. That these different spectra do exist can be readily shown by placing in the beam a piece of red glass, when symmetrical pairs of the red part of the spectrum will be found, one of each pair being on opposite sides of what will now be the central red spot. Half the light falling on the grating is concentrated in this central spot, and the remaining half goes to form the spectra; the pair nearest the central spot being the brightest. We thus are drawn to the conclusion that at the outside we can only have less than one-quarter of the incident light to form the brightest spectrum we can use. With two good prisms we use at last three-fourths of the incident light, so that for the same length of spectrum we can get at least three times the average brightness that we should get were we to employ a diffraction grating.

We must now refresh the reader's memory with a few simple facts about light, in order that our meaning may be clear when we speak of rays of different wave-lengths. Every colour in the spectrum has a different wave-length, and it is owing to this difference in wave-length that we are able to separate them by refraction, or diffraction, and to isolate them. Light, or indeed any radiation, is caused by a rhythmic oscillation of the impalpable medium which we, for want of a better term, call ether, and the distance between two of these waves which are in the same phase is called the wave-length of the particular radiation. The extent of the oscillation is called the amplitude, which when squared is in effect a measure of the intensity of the radiation. Thus at sea the distance between the crests of two waves is the wave-length, and the height from trough to crest the amplitude; and the intensity, or power of doing work, of two waves of the same wave-lengths but of different heights, is as the square of their heights. Thus, if the height of one were one unit, and of the other two units, the latter could do four times more work than the former. The waves of radiation which give the sensation of colour in the spectrum vary in length, not perhaps to the extent that might be imagined, considering the great difference that is perceived by the eye, but still they are markedly different. The fact that the spectrum of sunlight is not continuous, but is broken up by innumerable fine lines, has already been alluded to. The position of these lines is always the same, as regards the colour in which they are situated, and is absolutely fixed directly we know their wave-length; hence if we know the wave-lengths of these lines, we can refer the colour in which they lie to them. Now some lines of the solar-spectrum are blacker and consequently more marked than others, and instead of referring the colours to the finer lines, we can refer them to the distance they are from one or more of these darker lines, where these latter are absolutely fixed; in fact they act as mile-stones on a road.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Colour Measurement and Mixture
Подняться наверх