Transparent Ceramics
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Adrian Goldstein. Transparent Ceramics
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Transparent Ceramics. Materials, Engineering, and Applications
Foreword
Acknowledgments
General Abbreviations
1 Introduction. 1.1 Importance of Transparent Ceramics: The Book's Rationale Topic and Aims
1.2 Factors Determining the Overall Worth of Transparent Ceramics
1.2.1 Technical Characteristics
1.2.2 Fabrication and Characterization Costs
1.2.3 Overview of Worth
1.3 Spectral Domain for Ceramics High Transmission Targeted in This Book
1.3.1 High Transmission Spectral Domain
1.3.2 Electromagnetic Radiation/Solid Interaction in the Vicinity of the Transparency Domain
1.4 Definition of Transparency Levels
1.5 Evolution of Transmissive Ability Along the Ceramics Development History
1.5.1 Ceramics with Transparency Conferred by Glassy Phases
1.5.2 The First Fully Crystalline Transparent Ceramic
1.5.3 A Brief Progress History of All-Crystalline Transparent Ceramics
2 Electromagnetic Radiation: Interaction with Matter
2.1 Electromagnetic Radiation: Phenomenology and Characterizing Parameters
2.2 Interference and Polarization
2.3 Main Processes which Disturb Electromagnetic Radiation After Incidence on a Solid
2.3.1 Refraction
2.3.2 Reflection
2.3.3 Birefringence
2.3.4 Scattering
2.3.4.1 Scattering by Pores
2.3.4.2 Scattering Owed to Birefringence
2.3.5 Absorption. 2.3.5.1 Transition Metal and Rare-Earth Cations in Transparent Ceramic Hosts
2.3.5.2 Absorption Spectra of Metal and Rare-Earth Cations Located in TC Hosts
2.3.5.2.1 Transition Metal and Rare-Earth Cations' Electronic Spectra: Theoretical Basis
2.3.5.2.1.1 Electronic States of a Cation in Free Space
2.3.5.2.2 Absorption Spectra of Transition Metal and Rare-Earth Cations: Examples
2.3.5.2.2.1 The Considered Solid Hosts
2.4 Physical Processes Controlling Light Absorption in the Optical Window Vicinity
2.4.1 High Photon Energy Window Cutoff: Ultraviolet Light Absorption in Solids
2.4.2 Low Photon Energy Window Cutoff: Infrared Light Absorption in Solids
2.4.2.1 Molecular Vibrations
2.4.2.2 Solid Vibrations
2.4.2.3 Acoustic Modes
2.4.2.4 Optical Modes
2.5 Thermal Emissivity
2.6 Color of Solids. 2.6.1 Quantitative Specification of Color
2.6.2 Coloration Mechanisms: Coloration Based on Conductive Colloids
Notes
3 Ceramics Engineering: Aspects Specific to Those Transparent
3.1 Processing
3.1.1 List of Main Processing Approaches
3.1.2 Powder Compacts Sintering
3.1.2.1 Configuration Requirements for High Green Body Sinterability: Factors of Influence
3.1.2.2 Powder Processing and Green-Body Forming
3.1.2.2.1 Agglomerates
3.1.2.2.2 Powder Processing
3.1.2.2.3 Forming Techniques
3.1.2.2.3.1 Press Forming
3.1.2.2.3.2 Liquid-Suspensions Based Forming
3.1.2.2.3.3 Slip-Casting Under Strong Magnetic Fields
3.1.2.2.3.4 Gravitational Deposition, Centrifugal-Casting, and Filter-Pressing
3.1.2.3 Sintering
3.1.2.3.1 Low Relevancy of Average Pore Size
3.1.2.3.2 Pore Size Distribution Dynamics During Sintering
3.1.2.3.3 Grain Growth
3.1.2.3.4 Methods for Pores Closure Rate Increase
3.1.2.3.4.1 Liquid Assisted Sintering
3.1.2.3.4.2 Pressure Assisted Sintering
3.1.2.3.4.3 Sintering Under Electromagnetic Radiation
3.1.2.3.4.4 Sintering Slip-Cast Specimens Under Magnetic Field
3.1.2.3.4.5 Reaction-Preceded Sintering
3.1.2.3.4.6 Use of Sintering Aids
3.1.3 Bulk Chemical Vapor Deposition (CVD)
3.1.4 Glass-Ceramics Fabrication by Controlled Glass Crystallization. 3.1.4.1 Introduction
3.1.4.2 Glass Crystallization: Basic Theory
3.1.4.2.1 Nucleation
3.1.4.2.2 Crystal Growth
3.1.4.2.3 Phase Separation in Glass
3.1.4.2.4 Crystal Morphologies
3.1.4.3 Requirements for the Obtainment of Performant Glass-Ceramics
3.1.4.3.1 Nucleators
3.1.4.4 Influence of Controlled Glass Crystallization on Optical Transmission
3.1.4.4.1 Full Crystallization
3.1.5 Bulk Sol–Gel
3.1.6 Polycrystalline to Single Crystal Conversion via Solid-State Processes
3.1.7 Transparency Conferred to Non-cubic Materials by Limited Lattice Disordering
3.1.8 Transparent Non-cubic Nanoceramics
3.1.9 Grinding and Polishing
3.2 Characterization
3.2.1 Characterization of Particles, Slurries, Granules, and Green Bodies Relevant in Some Transparent Ceramics Fabrication
3.2.1.1 Powder Characterization
3.2.1.2 Granules Measurement and Slurry Characterization
3.2.1.3 Green-Body Characterization
3.2.2 Scatters Topology Illustration
3.2.2.1 Laser-Scattering Tomography (LST)
3.2.3 Discrimination Between Translucency and High Transmission Level
3.2.4 Bulk Density Determination from Optical Transmission Data
3.2.5 Lattice Irregularities: Grain Boundaries, Cations Segregation, Inversion
3.2.6 Parasitic Radiation Absorbers' Identification and Spectral Characterization
3.2.6.1 Absorption by Native Defects of Transparent Hosts
3.2.7 Detection of ppm Impurity Concentration Levels
3.2.8 Mechanical Issues for Windows and Optical Components
4 Materials and Their Processing
4.1 Introduction. 4.1.1 General
4.1.2 List of Materials and Their Properties
4.2 Principal Materials Description
4.2.1 Mg and Zn Spinels
4.2.1.1 Mg-Spinel. 4.2.1.1.1 Structure
4.2.1.1.1.1 Ideal Lattice Structure
4.2.1.1.1.2 Inversion
4.2.1.1.1.3 Native Point Defects and Their Effects
4.2.1.1.2 Fabrication. 4.2.1.1.2.1 By Powder Compact Sintering
4.2.1.1.2.2 Fusion Casting
4.2.1.1.3 Properties of Spinel. 4.2.1.1.3.1 Mechanical Properties
4.2.1.1.3.2 Optical and Spectral Properties
4.2.1.2 Zn-Spinel
4.2.2 γ-Al-oxynitride. 4.2.2.1 Composition and Structure
4.2.2.2 Processing
4.2.2.2.1 Fabrication Approaches
4.2.2.2.2 Powder Synthesis
4.2.2.2.3 Green Parts Forming. Sintering
4.2.2.3 Characteristics of Densified Parts
4.2.3 Transparent and Translucent Alumina
4.2.3.1 Structure
4.2.3.1.1 Utility of T-PCA
4.2.3.2 Processing of Transparent Ceramic Alumina. 4.2.3.2.1 Raw Materials
4.2.3.2.2 Processing
4.2.3.3 Properties of Transparent Alumina
4.2.4 Transparent Magnesia and Calcia
4.2.4.1 Structure
4.2.4.2 Raw Materials and Processing
4.2.4.3 Properties
4.2.4.4 Transparent Calcium Oxide
4.2.5 Transparent YAG and Other Garnets
4.2.5.1 Structure, Processing, and Properties of YAG
4.2.5.1.1 Processing
4.2.5.1.1.1 YAG Powders
4.2.5.1.1.2 Processing Procedure Description
4.2.5.1.2 Properties of YAG
4.2.5.1.2.1 Spectral Effects of Impurities
4.2.5.2 LuAG
4.2.5.3 Garnets Based on Tb
4.2.5.4 Garnets Based on Ga
4.2.5.5 Other Materials Usable for Magneto-Optical Components
4.2.6 Transparent Yttria and Other Sesquioxides. 4.2.6.1 Structure of Y2O3
4.2.6.2 Processing of Y2O3
4.2.6.2.1 Y2O3 Powders
4.2.6.2.2 Processing Approaches
4.2.6.2.3 Discussion of Processing
4.2.6.3 Properties of Y2O3
4.2.6.4 Other Sesquioxides with Bixbyite Lattice
4.2.6.4.1 Sc2O3
4.2.6.4.2 Lu2O3
4.2.7 Transparent Zirconia
4.2.7.1 Structure: Polymorphism, Effect of Alloying
4.2.7.2 Processing–Transparency Correlation in Cubic Zirconia Fabrication
4.2.7.2.1 Zirconia Powders
4.2.7.2.2 Forming and Sintering
4.2.7.3 Properties
4.2.7.3.1 Density of Zirconias
4.2.7.4 Types of Transparent Zirconia
4.2.7.4.1 TZPs
4.2.7.4.2 Cubic ZrO2
4.2.7.4.3 Monoclinic Zirconia
4.2.7.4.4 Electronic Absorption
4.2.8 Transparent Metal Fluoride Ceramics
4.2.8.1 Crystallographic Structure
4.2.8.2 Processing of Transparent-Calcium Fluoride
4.2.8.3 Properties
4.2.9 Transparent Chalcogenides. 4.2.9.1 Composition and Structure
4.2.9.2 Processing
4.2.9.3 Properties
4.2.10 Ferroelectrics
4.2.10.1 Ferroelectrics with Perovskite-Type Lattice
4.2.10.2 PLZTs: Fabrication and Properties
4.2.10.2.1 Electro-optic Properties of PLZTs
4.2.10.3 Other Perovskites Including Pb
4.2.10.4 Perovskites Free of Pb
4.2.10.4.1 Ba Metatitanate
4.2.10.4.2 Materials Based on the Potassium Niobate-sodium Niobate System
4.2.10.4.2.1 Perovskites Including B2+ and B5+ Cations
4.2.11 Transparent Glass-Ceramics
4.2.11.1 Transparent Glass Ceramics Based on Stuffed β-Quartz Solid Solutions
4.2.11.2 Transparent Glass Ceramics Based on Crystals Having a Spinel-Type Lattice
4.2.11.3 Mullite-Based Transparent Glass-Ceramics
4.2.11.4 Other Transparent Glass-Ceramics Derived from Polinary Oxide Systems
4.2.11.5 Oxyfluoride Matrix Transparent Glass-Ceramics
4.2.11.6 Transparent Glass-Ceramics Including Very High Crystalline Phase Concentration. 4.2.11.6.1 Materials of Extreme Hardness (Al2O3–La2O3, ZrO2)
4.2.11.6.2 TGCs of High Crystallinity Including Na3Ca Silicates
4.2.11.6.3 Materials for Scintillators
4.2.11.7 Pyroelectric and Ferroelectric Transparent Glass-Ceramics
4.2.12 Cubic Boron Nitride
4.2.13 Ultrahard Transparent Polycrystalline Diamond Parts. 4.2.13.1 Structure
4.2.13.2 Fabrication
4.2.13.3 Properties
4.2.14 Galium Phosphide (GaP)
4.2.15 Transparent Silicon Carbide and Nitride and Aluminium Oxynitride
5 TC Applications
5.1 General Aspects
5.2 Brief Description of Main Applications
5.2.1 Envelopes for Lighting Devices
5.2.2 Transparent Armor Including Ceramic Layers. 5.2.2.1 Armor: General Aspects
5.2.2.1.1 The Threats Armor Has to Defeat (Projectiles)
5.2.2.1.2 The Role of Armor
5.2.2.1.3 Processes Generated by the Impact of a Projectile on a Ceramic Strike-Face (Small Arm Launchers)
5.2.2.1.4 Final State of the Projectile/Armor Impact Event Participants
5.2.2.1.4.1 Armor Performance Descriptors
5.2.2.1.5 Characteristics which Influence Armor Performance
5.2.2.1.6 Ceramic Armor Study and Design
5.2.2.2 Specifics of the Transparent-Ceramic Based Armor
5.2.2.3 Materials for Transparent Armor
5.2.2.3.1 Ceramics
5.2.2.3.2 Single Crystals
5.2.2.3.3 Glass-Ceramics
5.2.2.3.4 Glasses
5.2.2.4 Examples of Transparent Ceramics Armor Applications
5.2.3 Infrared Windows
5.2.3.1 The Infrared Region
5.2.3.2 Background Regarding Heavy Duty Windows
5.2.3.2.1 Threats to Missile IR Domes: Material Characteristics Relevant for Their Protection. 5.2.3.2.1.1 Impact of Particulates (Erosion)
5.2.3.2.1.2 Thermal Shock
5.2.3.3 Applications of infrared transparent ceramics
5.2.3.3.1 Missile Domes and Windows for Aircraft-Sensor Protection
5.2.3.3.2 Laser Windows: Igniters, Cutting Tools, LIDARs. 5.2.3.3.2.1 Igniters
5.2.3.3.2.2 LIDAR-Windows
5.2.3.3.3 Windows for Vacuum Systems
5.2.3.4 Ceramic Materials Optimal for the Various IR Windows Applications
5.2.3.4.1 Competitor Materials: Glasses and Single Crystals
5.2.3.4.2 Glasses
5.2.3.4.3 Single Crystals
5.2.3.4.4 Sapphire
5.2.3.4.5 Crystals for the 8–12 μm Window
5.2.3.5 Radomes
5.2.4 Transparent Ceramics for Design, Decorative Use, and Jewelry
5.2.5 Components of Imaging Optic Devices (LENSES)
5.2.6 Dental Ceramics
5.2.7 Applications of Transparent Ferroelectric and Pyroelectric Ceramics
5.2.7.1 Flash Goggles
5.2.7.2 Color Filter
5.2.7.3 Stereo Viewing Device
5.2.7.4 Applications of Second-Generation (Non-PLZT) Ferroelectric Ceramics
5.2.8 Applications of Ceramics with Magnetic Properties
5.2.9 Products Based on Ceramic Doped with Transition and/or Rare-Earth Cations
5.2.9.1 Gain Media for Solid-State Lasers
5.2.9.1.1 Lasers: Definition and Functioning Mechanisms
5.2.9.1.1.1 Lasing Mechanisms
5.2.9.1.2 Laser Systems Efficiency: Characterizing Parameters
5.2.9.1.3 Laser Oscillators and Amplifiers
5.2.9.1.4 Device Operation Related Improvements Allowing Increase of Ceramic Lasers Performance
5.2.9.1.4.1 Diode Lasers as Pumping Sources
5.2.9.1.4.2 Cryogenic Operation
5.2.9.1.4.3 Cavity-Loss Control
5.2.9.1.4.4 Laser Output Signal Manipulation
5.2.9.1.4.5 Lasing Device Configuration Optimization
5.2.9.1.4.6 ThinZag Configuration
5.2.9.1.4.7 Virtual Point Source Pumping
5.2.9.1.5 Ceramic Gain Media (Host + Lasant Ion) Improvements. 5.2.9.1.5.1 The Hosts
5.2.9.1.5.2 Principal Lasing Cations Operating in Ceramic Hosts
5.2.9.1.6 Applications of Ceramic Lasers
5.2.9.1.6.1 Materials Working
5.2.9.1.6.2 Laser Weapons
5.2.9.1.6.3 Combustion Ignitors: Cars and Guns
5.2.9.1.6.4 Other Applications
5.2.9.2 Q-switches. 5.2.9.2.1 General
5.2.9.2.2 Transition Metal Cations Usable for Switching. 5.2.9.2.2.1 Co2+
5.2.9.2.2.2 Cr4+,5+
5.2.9.2.2.3 V3+
5.2.9.2.2.4 Cr2+ (d4), Fe2+ (d6)
5.2.9.3 Ceramic Phosphors for Solid State Lighting Systems
5.2.9.3.1 Artificial Light Sources: General Considerations
5.2.9.3.1.1 Conventional Light Sources Powered by Electricity
5.2.9.3.1.2 Incandescent Lamps
5.2.9.3.1.3 Discharge Lamps
5.2.9.3.1.4 Fluorescent Lamps
5.2.9.3.1.5 Solid-State Lighting Sources
5.2.9.3.2 Transparent Bulk Ceramics Based Phosphors for Light Sources Based on LEDs
5.2.9.3.2.1 Ce3+:YAG and Ce3+, RE3+:YAG Phosphors
5.2.9.3.2.2 Bathochrome Moving (Redshifting) of Ce3+ Emission by YAG Lattice Straining
5.2.9.3.2.3 Summary of SSLSs
5.2.9.4 Scintillators
6 Future Developments
7 Conclusions
References
Index
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Adrian Goldstein, Andreas Krell, and Zeev Burshtein
.....
Besides the transparency term describing the nature of light crossing through a ceramic material, an associated translucency term is often used. Both terms describe the same physical process, indicating difference only in the degree by which an incident light beam preserves its ordered properties upon interaction with a transmissive solid.
Figure 1.2 Transmission range of a few transparent ceramics and glasses shown by the aid of optical spectral curves. 1, Fused silica glass; 2, borosilicate glass; 3, MgAl2O4 ceramic; 4, AlON ceramic; 5, submicron alpha alumina ceramic; 6, yttria ceramic; and 7, ZnSe single crystal/ceramic.
.....