Mathematical Programming for Power Systems Operation

Mathematical Programming for Power Systems Operation
Автор книги: id книги: 2217428     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 12561,2 руб.     (121,02$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119747284 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore the theoretical foundations and real-world power system applications of convex programming In Mathematical Programming for Power System Operation with Applications in Python , Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations. The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems. Mathematical Programming for Power System Operation with Applications in Python uses Python and CVXPY as tools to solve power system optimization problems and includes models that can be solved with the presented framework. The book also includes: A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution, Mathematical Programming for Power System Operation with Applications in Python is also an ideal resource for graduate students and engineers practicing in the area of power system optimization.

Оглавление

Alejandro Garcés Ruiz. Mathematical Programming for Power Systems Operation

Mathematical Programming for Power Systems Operation. Mathematical Programming for Power Systems Operation. From Theory to Applications in Python

Contents

List of Illustrations

List of Tables

Guide

Pages

Acknowledgment

Introduction

1 Power systems operation

1.1 Mathematical programming for power systems operation

1.2 Continuous models. 1.2.1 Economic and environmental dispatch

1.2.2 Hydrothermal dispatch

1.2.3 Effect of the grid constraints

1.2.4 Optimal power flow

1.2.5 Hosting capacity

1.2.6 Demand-side management

1.2.7 Energy storage management

1.2.8 State estimation and grid identification

1.3 Binary problems in power systems operation

1.3.1 Unit commitment

1.3.2 Optimal placement of distributed generation and capacitors

1.3.3 Primary feeder reconfiguration and topology identification

1.3.4 Phase balancing

1.4 Real-time implementation

1.5 Using Python

Notes

2 A brief introduction to mathematical optimization

2.1 About sets and functions

Example 2.1

Example 2.2

Example 2.3

2.2 Norms

2.3 Global and local optimum

2.4 Maximum and minimum values of continuous functions

2.5 The gradient method

Example 2.4

Example 2.5

Example 2.6

Example 2.7

2.6 Lagrange multipliers

Example 2.8

2.7 The Newton’s method

Example 2.9

2.8 Further readings

2.9 Exercises

Notes

3 Convex optimization

3.1 Convex sets

Example 3.1

Example 3.2

Example 3.3

Example 3.4

Example 3.5

Example 3.6

Example 3.7

Example 3.8

3.2 Convex functions

Example 3.9

Example 3.10

Example 3.11

Example 3.12

3.3 Convex optimization problems

Example 3.13

Example 3.14

Example 3.15

Example 3.16

Example 3.17

3.4 Global optimum and uniqueness of the solution

3.5 Duality

Example 3.18

Example 3.19

Example 3.20

Example 3.21

3.6 Further readings

3.7 Exercises

Notes

4 Convex Programming in Python

4.1 Python for convex optimization

4.2 Linear programming

Example 4.1

Example 4.2

Example 4.3

Example 4.4

Example 4.5

4.3 Quadratic forms

Example 4.6

Example 4.7

4.4 Semidefinite matrices

Example 4.8

Example 4.9

Example 4.10

4.5 Solving quadratic programming problems

Example 4.11

Example 4.12

Example 4.13

4.6 Complex variables

Example 4.14

4.7 What is inside the box?

4.8 Mixed-integer programming problems

Example 4.15

Example 4.16

4.9 Transforming MINLP into MILP

Example 4.17

Example 4.18

4.10 Further readings

4.11 Exercises

Notes

5 Conic optimization

5.1 Convex cones

5.2 Second-order cone optimization

Example 5.1

Example 5.2

Example 5.3

Example 5.4

Example 5.5

5.2.1 Duality in SOC problems

5.3 Semidefinite programming

5.3.1 Trace, determinant, and the Shur complement

Example 5.6

Example 5.7

5.3.2 Cone of semidefinite matrices

Example 5.8

Example 5.9

Example 5.10

5.3.3 Duality in SDP

5.4 Semidefinite approximations

Example 5.11

Example 5.12

5.5 Polynomial optimization

Example 5.13

Example 5.14

5.6 Further readings

5.7 Exercises

Notes

6 Robust optimization

6.1 Stochastic vs robust optimization

6.1.1 Stochastic approach

6.1.2 Robust approach

6.2 Polyhedral uncertainty

Example 6.1

6.3 Linear problems with norm uncertainty

Example 6.2

6.4 Defining the uncertainty set

Example 6.3

Example 6.4

Example 6.5

Example 6.6

Example 6.7

Example 6.8

6.5 Further readings

6.6 Exercises

Notes

7 Economic dispatch of thermal units

7.1 Economic dispatch

Example 7.1

Example 7.2

Example 7.3

Example 7.4

Example 7.5

Example 7.6

7.2 Environmental dispatch

Example 7.7

Example 7.8

7.3 Effect of the grid

Example 7.9

Example 7.10

7.4 Loss equation

Example 7.11

7.5 Further readings

7.6 Exercises

Notes

8 Unit commitment

8.1 Problem definition

8.2 Basic unit commitment model

Example 8.1

8.3 Additional constraints

8.4 Effect of the grid

Example 8.2

8.5 Further readings

8.6 Exercises

9 Hydrothermal scheduling

9.1 Short-term hydrothermal coordination

9.2 Basic hydrothermal coordination

Example 9.1

9.3 Non-linear models

Example 9.2

9.4 Hydraulic chains

Example 9.3

9.5 Pumped hydroelectric storage

Example 9.4

9.6 Further readings

9.7 Exercises

Notes

10 Optimal power flow

10.1 OPF in power distribution grids

10.1.1 A brief review of power flow analysis

Example 10.1

Example 10.2

Example 10.3

Example 10.4

10.2 Complex linearization

Example 10.5

Example 10.6

10.2.1 Sequential linearization

Example 10.7

10.2.2 Exponential models of the load

Example 10.8

10.3 Second-order cone approximation

Example 10.9

Example 10.10

Example 10.11

10.4 Semidefinite approximation

Example 10.12

10.5 Further readings

10.6 Exercises

Notes

11 Active distribution networks

11.1 Modern distribution networks

11.2 Primary feeder reconfiguration

Example 11.1

11.3 Optimal placement of capacitors

Example 11.2

Example 11.3

11.4 Optimal placement of distributed generation

Example 11.4

11.5 Hosting capacity of solar energy

Example 11.5

11.6 Harmonics and reactive power compensation

Example 11.6

11.7 Further readings

11.8 Exercises

Notes

12 State estimation and grid identification

12.1 Measurement units

12.2 State estimation

Example 12.1

Example 12.2

12.3 Topology identification

Example 12.3

12.4 Ybus estimation

Example 12.4

Example 12.5

Example 12.6

12.5 Load model estimation

Example 12.7

Example 12.8

12.6 Further readings

12.7 Exercises

Notes

13 Demand-side management

13.1 Shifting loads

Example 13.1

Example 13.2

13.2 Phase balancing

Example 13.3

Example 13.4

13.3 Energy storage management

Example 13.5

13.4 Further readings

13.5 Exercises

Notes

A The nodal admittance matrix

Example A.1

Example A.2

Notes

B Complex linearization

Notes

C Some Python examples

C.1 Basic Python. Example C.1

Example C.2

Example C.3

Example C.4

Example C.5

Example C.6

Example C.7

Example C.8

Example C.9

C.2 NumPy

Example C.10

Example C.11

Example C.12

Example C.13

Example C.14

C.3 MatplotLib. Example C.15

C.4 Pandas

Example C.16

Bibliography

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Alejandro GarcésTechnological University of PereiraPereira, Colombia

Alejandro Garcés

.....

The gradient of this function is presented below:

(2.32)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Mathematical Programming for Power Systems Operation
Подняться наверх