Квантовая физика и нити пространства
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Анатолий Трутнев. Квантовая физика и нити пространства
Предисловие
Глава 1. Ведущая теория современной физики
1.1 История возникновения и становления квантовой физики
1.2 Достижения и проблемы квантовой физики
1.3 Методика моделирования
Глава 2. Физический вакуум и нити пространства
2.1 Мировая сеть силовых нитей, состоящая из простонов
2.2 Антимировая сеть силовых нитей, состоящая из гравитонов
Глава 3. Масса и нити пространства
3.1 Гравитационная масса
3.2 Инертная масса
3.3 Отрицательная масса
Глава 4. Энергия и нити пространства
Глава 5. Гравитация и нити пространства
Глава 6. Гравитационные волны и нити пространства
Глава 7. Черные дыры и нити пространства
Глава 8. Физические поля и нити пространства
Глава 9. Заряды и нити пространства
Глава 10. Стандартная модель и нити пространства
Кварки
Лептоны
Бозоны
Глава 11. Электромагнитные излучения и нити пространства
Глава 12. Лазеры и нити пространства
Глава 13. Физика атомного ядра
13.1 Строение атомного ядра
13.2 Радиоактвность ядератомов химических элементов
13.3 Термоядерный синтез
Глава 14. Перспективы использования базовых принципов модели в углублении и уточнении положений квантовой физики
Отрывок из книги
Книга знакомит читателей с результатами исследований, проведенных с помощью смоделированной системы взаимодействия материи с пространством, базовые принципы которой позволяют уточнить и углубить некоторые теории и положения квантовой физики. Модель основана на косвенных доказательствах существования «нитей» пространства, поисками которых в последнее время занимаются многие видные ученые физики. Основными направлениями этих работ являются поиски «нитей» пространства и исследование структуры пространства – времени. По сообщению ряда ученых в настоящее время реализуются эксперименты, в которых уже обнаружены первые признаки «нитей», составляющие ткань Вселенной. А физик Жвирблис считает пространство – время дискретным. По мнению, американского теоретика Боджовалда, познание структуры пространства – времени это последний рубеж на пути к полному пониманию природы.
Исследования проводились с использованием физических явлений, процессов фактически происходящих в природе. В подтверждение полученных результатов. выводов использованы данные других авторов, приведенные в публичной литературе.
.....
Тунеллирование одна из заметных загадок странностей квантовой физики. Это явление квантовой природы, которое в классической механике не может происходить. Суть его заключается в следующем. Микрочастица может преодолеть потенциальный барьер, когда её полная энергия меньше высоты барьера. При тунеллировании сохраняются как полная энергия частицы, так и её и импульс. Из уравнения де Бройля следует, что элементарные частицы имеют определенный импульс и определенную длину волны. Из вероятностной интерпретации Борна следует, если частица не локализирована в пространстве, то неопределенность её положения становится бесконечной. Но в реальности длины волн не бесконечны, поэтому неопределенность положения частицы и неопределенность её импульса имеют ограниченное значение. Эффект квантового тунеллирования возникает, когда частицы движутся через барьер, который по канонам классической физики, они не могут пройти. Барьером может быть непроходимая среда в виде области с высоким потенциалом энергии. Если при столкновении частицы с барьером, она как квантовая волна не погаснет, а ее амплитуда уменьшится, то это будет означать уменьшение вероятности прохождения частицы сквозь барьер. Если барьер будет достаточно тонкий, то амплитуда частицы в этом случае может быть ненулевой с другой стороны барьера. Следовательно, существует вероятность того, что отдельные частицы будут проходить через барьер. В физике нет единого определения туннельного времени, потому что время не является оператором в квантовой механике. Эксперименты по определению времени прохождения сквозь барьер квантовых частиц вследствие малых масштабов времени (аттосекунды) и масштабов длины (субнанометры), а также из-за помех окружающей среды, очень затруднительны. Впервые тунелльное время было измерено и описано в 1962 году немецким физиком Томасом Хартманом и с тех пор носит название эффект Хартмана. В результате проведенных экспериментов Хартман установил. тунеллирование является сверхсветовым процессом. Неоднократно проведенные экспериментальные проверка эффекта Хартмана независимо с какой точностью физики определяли время туннелирования, он неизменно проявлялся. Последние сомнения в точности проведения экспериментов по определению времени туннелирования поставили исследователи из Университета Торонто Дэвид Спирингс и Изабель Рашико. Барьером для прохождения служил лазерный луч, сквозь который исследователи пропустили магнитное поле. Потом взяли атомы рубидия. Спины атомов были ориентированы в определенном направлении, Направили атомы на барьер. часть из них прошла через него. Затем измерили спины атомов рубидия на другой стороне барьера и определили время тунеллирования атомов через лазерный луч. В итоге оказалось, что скорость прохождения атомов сквозь барьер превышает скорость света 105 раз. Однако ученые не считают, что при этом происходит сверхсветовая передача сигналов, хотя и отмечают, что туннелирование является еще более странным, нежели запутанность.
Квантовая физика имеет впечатляющие успехи в описании физического мира. На основании её теорий и положений эти описания делаются более точно, чем это делось до её возникновения. Она заставила коренным образом пересмотреть взгляды на понятия волны, поля и частицы. Ввела в физику понятие спина микрочастиц, как квантового объекта, не зависящего от внешних условий, определяющего свойства частиц. Те приемы, которыми квантовая физика описывает процессы, проходящие в микромире трудно воспринимаемые. Но результаты, получаемые при использовании теорий и предсказаний квантовой физики, позволили объяснить многие физические явления, которые классическую физику ставили в тупик. Использование квантово механические представления квантовой физики дало возможность переосмыслить природу частиц. На основании теоретических разработок квантовой физики были предсказаны, а затем экспериментально открыты новые фундаментальные (неделимые) частицы кварки. В последнее десятилетие работы ученых направлены на изучении кварковой структуры элементарных частиц и при этом получены обнадеживающие результаты. Квантовая физика включает в себя классическую физику. Это самая современная физика. Только она смогла решить давно назревший вопрос и логически объяснить, почему атомы сохраняют устойчивость. Квантовая теория поля, входящая в состав квантовой физики, смогла объяснить основы корпускулярно – волнового дуализма элементарных частиц, который считается качественным отличием микромира. Теперь при обнаружении новых свойств частиц микромира, постулируются новые виды взаимодействий, придумываются новые трактовки этих свойств. Благодаря положениям квантовой физики, теоретики в своих теоретических разработках конструируют природу, используя новый механизм исследований виртуальность. Знакомство с микромиром на таком уровне потребовало создания сложного оборудования при проведении опытных работ. Теории разработанные в рамках квантовой физики оказали огромное влияние на развитие атомной энергетики. квантовой электроники, лазерной техники.
.....