Supramolecular Polymers and Assemblies

Supramolecular Polymers and Assemblies
Автор книги: id книги: 1964639     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18154,3 руб.     (196,25$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527832408 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore modern characterization methods and new applications in this modern overview of supramolecular polymer chemistry    Supramolecular Polymers and Assemblies: From Synthesis to Properties and Applications  delivers a superlative summary and description of general concepts and definitions in the field. The book offers informative and accessible treatments of crucial concepts like metal-containing compounds, hydrogen bonding, ionic interactions, pi-pi stacking, and more.  Characterization remains a primary focus of the book throughout, making it extremely useful for practitioners in the field. Emphasis is also placed on metallo-supramolecular polymers and materials which have found applications in areas like smart or intelligent materials and systems with special photochemical and photophysical properties, like LEDs and solar cells. Applications, including self-healing materials, opto-electronics, sensing, and catalysis are all discussed as well.  The book details many of the exciting developments in the field of supramolecular chemistry that have occurred since the 1987 Nobel Prize was awarded to pioneers in this rapidly developing field. Readers will also benefit from the inclusion of:  A thorough introduction to supramolecular assemblies based on ionic interactions Explorations of supramolecular polymers based on hydrogen-bonding interactions, metal-to-ligand interactions, p-Electronic interactions, crown-ether recognition, cucurbiturils, and host-guest chemistry of calixarenes A discussion of cyclodextrins in the field of supramolecular polymers Examinations of supramolecular polymers based on the host-guest chemistry of pillarenes, and those formed by orthogonal non-covalent interactions A treatment of the characterization of supramolecular polymers  Supramolecular Polymers and Assemblies: From Synthesis to Properties and Applications will earn a place in the libraries of researchers and practitioners of the material science, as well as polymer chemists seeding a one-stop reference for supramolecular polymers.

Оглавление

Andreas Winter. Supramolecular Polymers and Assemblies

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Supramolecular Polymers and Assemblies. From Synthesis to Properties and Applications

Preface

Abbreviations

About the Authors

1 Supramolecular Polymers: General Considerations* 1.1 Introduction

1.2 Classification Schemes

1.3 Supramolecular Polymerization Mechanisms

1.3.1 Isodesmic Supramolecular Polymerization

1.3.2 Ring‐Chain‐Mediated Supramolecular Polymerization

1.3.3 (Anti)‐cooperative Supramolecular Polymerization

1.4 Beyond Classical Supramolecular Polymerization

1.5 Concluding Remarks

References

Note

2 Supramolecular Assemblies Based on Ionic Interactions. 2.1 General Aspects

2.2 Basic Binding Modes and Discrete Model Assemblies

2.3 Supramolecular Polymers, Based on Ionic Interactions

2.3.1 Ionic Interactions, as Integral Part of the Polymer Backbone

2.3.1.1 Polymers, as Building Blocks

2.3.1.2 Small Molecules, as Building Blocks

2.3.2 Polymers Featuring Ionic Interactions in the Side Chain

2.3.3 Self‐assembly of Polyelectrolytes: Toward Polyelectrolyte Complexes

2.4 Concluding Remarks

References

3 Supramolecular Polymers, Based on Hydrogen‐Bonding Interactions*

3.1 General Aspects

3.2 From H‐Bonding Interactions to Supramolecular Polymers

3.2.1 Supramolecular Polymers, Based on Single H‐Bonding Interactions

3.2.2 Supramolecular Polymers, Based on Double H‐Bonding Interactions

3.2.3 Supramolecular Polymers, Based on Triple H‐Bonding Interactions

3.2.4 Supramolecular Polymers, Based on Quadruple H‐Bonding Interactions

3.2.5 Supramolecular Polymers, Based on Sextuple H‐Bonding Interactions

3.2.6 Supramolecular Polymers, Based on Multiple H‐Bonding Interactions

3.3 Conclusion Remarks

References

Note

4 Supramolecular Polymers, Based on Metal‐to‐Ligand Interactions* 4.1 General Aspects

4.2 Synthesis and Design Principles. 4.2.1 Metal‐Binding Sites in Metallo‐supramolecular Polymers

4.2.2 Synthesis of Metallo‐supramolecular Polymers

4.3 Linear Metallo‐supramolecular Polymers

4.3.1 Metallo‐supramolecular Polymers, Based on Coordinative Bonding

4.3.1.1 Metallopolymers Containing Ditopic Monodentate Ligands

4.3.1.2 Coordination Polymers Containing Ditopic Bidentate Ligands

4.3.1.3 Coordination Polymers Containing Ditopic Tridentate Ligands

4.3.2 Metallo‐supramolecular Polymers, Based on Covalent/Ionic Bonding

4.3.3 Metallo‐supramolecular Polymers Based on Metal–Arene Interactions

4.4 Concluding Remarks

References

Note

5 Supramolecular Polymers, Based on π‐Electronic Interactions. 5.1 General Aspects

5.2 Columnar Supramolecular Polymers, Based on π–π Stacking Interactions

5.3 From π–π Stacking to Advanced Donor–Acceptor‐Type Charge–Transfer Interactions

5.4 From Charge–Transfer to π‐Electronic Ion‐Pairing Interactions

5.5 Linear Supramolecular Polymers, Based on π‐Electronic Interactions

5.6 Conclusion and Outlook

References

6 Supramolecular Polymers, Based on Crown Ether Recognition. 6.1 General Aspects

6.2 From Crown Ether Molecular Recognition Toward Supramolecular Polymers

6.2.1 Linear Polypseudorotaxanes, Derived from Small‐Molecule Building Blocks

6.2.2 Linear Supramolecular Polymers Derived from Macromolecular Building Blocks

6.2.3 Dendritic, Hyperbranched, Star‐shaped, and Grafted Assemblies

6.3 Mechanical Interlocking: From Pseudorotaxanes to Rotaxanes

6.4 Poly(pseudo)rotaxanes, Derived from Preformed Polymers

6.5 Supramolecular Amphiphiles

6.6 Concluding Remarks

References

7 Supramolecular Polymers, Based on Cucurbiturils. 7.1 General Aspects

7.2 Interactions of CB[n]s with Small Organic Guest Molecules

7.3 Supramolecular Polymers Incorporating CB[n] Units

7.3.1 Supramolecular Polymers, Based on Small Organic Molecules

7.3.2 Supramolecular Polymers Incorporating (Bio)macromolecular Building Blocks

7.4 Concluding Remarks

References

8 Supramolecular Polymers, Based on the Host–Guest Chemistry of Calixarenes. 8.1 General Aspects

8.2 Calixarene‐Based Supramolecular Polycaps

8.3 Supramolecular Polymers Featuring Vacant Calixarene Scaffolds

8.4 Supramolecular Polymers, Formed by Host–Guest Interactions

8.4.1 Supramolecular Polymers, Derived from AB‐Type Monomers

8.4.2 Supramolecular Polymers, Derived from AA‐ and BB‐Type Monomers

8.5 Beyond Classical Calix[n]arenes: Calix[4]pyrroles

8.6 Miscellaneous Supramacromolecular Assemblies, Based on Calixarenes

8.7 Concluding Remarks

References

9 Cyclodextrins in the Field of Supramolecular Polymers. 9.1 General Aspects

9.2 Cyclodextrins and Supramolecular Polymers

9.2.1 Linear Polypseudorotaxanes, Derived from Preformed Linear Polymers

9.2.1.1 Polypseudorotaxanes from of Poly(ethylene Glycol)

9.2.1.2 Polypseudorotaxanes from Other Polyethers

9.2.1.3 Polypseudorotaxanes from Polyesters

9.2.1.4 Polypseudorotaxanes from Polyamides and Polyurethanes

9.2.1.5 Polypseudorotaxanes from Polyolefins

9.2.1.6 Polyrotaxanes from Inorganic Polymers

9.2.1.7 Polypseudorotaxanes from Conductive/Conjugated Polymers

9.2.1.8 Polypseudorotaxanes from Polyamines

9.2.2 Polypseudorotaxanes, Derived from Other Polymeric Architectures

9.2.2.1 Site‐Selective Complexation of Linear Block Copolymers

9.2.2.2 Polypseudorotaxanes from Star‐Shaped Polymers

9.2.2.3 Polypseudorotaxanes from Side‐Chain Polymers

9.3 End‐Capping: From Polypseudorotaxanes to Polyrotaxanes

9.4 Polymerization of Pre‐assembled Pseudorotaxanes

9.5 Supramolecular Polymerization, Based on CD Recognition

9.5.1 Supramolecular Polymerization of AB‐Type Monomers

9.5.2 Supramolecular Polymers, Derived from AA‐ and BB‐Type Monomers

9.5.3 Supramolecular Polymers, Derived from AA‐Type Monomers and CDs

9.6 Amphiphilic Supramolecular Diblock Copolymers

9.7 Concluding Remarks

References

10 Supramolecular Polymers, Based on the Host–Guest Chemistry of Pillarenes. 10.1 General Aspects

10.2 Host–Guest Complexation Between Pillarenes and Linear Polymers

10.3 Supramolecular Polymers, Derived from Pillarene‐based Host–Guest Interactions

10.4 Hyperbranched and Cross‐linked Assemblies

10.5 Supramolecular Assemblies, Based on Amphiphilic Pillar[5]arenes

10.6 Concluding Remarks

References

11 Supramolecular Polymers, Formed by Orthogonal Non‐covalent Interactions* 11.1 Introduction

11.2 Orthogonal Combinations of Supramolecular Interactions Involving Metal‐to‐Ligand Coordination

11.3 Orthogonal Combinations of Supramolecular Interactions Involving H-Bonding

11.4 Miscellaneous Orthogonal Combinations of Supramolecular Interactions

11.5 Biomimetic Orthogonal Self‐Assembly: Protein Recognition

11.6 Concluding Remarks

References

Note

12 Characterization of Supramolecular Polymers* 12.1 Introduction

12.2 Estimation of the Molar Mass from the Theories of Supramolecular Polymer Science

12.3 Size‐Exclusion Chromatography

12.4 Viscometry

12.5 Light Scattering

12.6 Vapor Pressure Osmometry

12.7 Analytical Ultracentrifugation

12.8 NMR Spectroscopy

12.9 Mass Spectrometry

12.10 Microscopy Imaging

12.10.1 Scanning Probe Microscopy

12.10.2 Electron Microscopy

12.11 Small/Wide‐Angle X‐Ray Scattering

12.12 X‐Ray Crystallography

12.13 Small‐Angle Neutron Scattering

12.14 Asymmetric Flow Field‐Flow Fractionation

12.15 Taylor Dispersion Analysis

12.16 They Are Very Complex Structures but Totally Timely …

References

Note

Index. a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

q

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Ulrich S. Schubert George R. Newkome Andreas Winter

In the 1960s, supramolecular polymers were created in which two or more ions or molecules are held together by non‐covalent interactions, such as ionic/Coulombic, hydrogen‐bonding, and π–π‐stacking interactions as well as metal‐to‐ligand coordination. A wide, diverse group of host–guest (inclusion) complexes was named in this context. Despite their chemically, highly different nature, they offer common characteristics, such as the unique ability to assemble linear polymer chains due to the mostly high directionality of these interactions and, even more importantly, their reversibility of binding. Thus, when incorporated into a polymer backbone, materials are obtained that exhibit properties that cannot be realized by traditional, i.e. covalent polymers.

.....

Jena & Jupiter

Figure 1.1 Schematic representation of a polymer based on non‐covalent interactions.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Supramolecular Polymers and Assemblies
Подняться наверх