Solid State Chemistry and its Applications

Solid State Chemistry and its Applications
Автор книги: id книги: 2329500     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 8302,56 руб.     (78,19$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781118695579 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

SOLID STATE CHEMISTRY AND ITS APPLICATIONS A comprehensive treatment of solid state chemistry complete with supplementary material and full colour illustrations from a leading expert in the field. Solid State Chemistry and its Applications, Second Edition delivers an advanced version of West’s classic text in solid state chemistry, expanding on the undergraduate Student Edition to present a comprehensive treatment of solid state chemistry suitable for advanced students and researchers. The book provides the reader with an up-to-date account of essential topics in solid state chemistry and recent developments in this rapidly developing field of inorganic chemistry. Significant updates and new content in this second edition include: A more extensive overview of important families of inorganic solids including spinels, perovskites, pyrochlores, garnets, Ruddlesden-Popper phases and many more New methods to synthesise inorganic solids, including sol-gel methods, combustion synthesis, atomic layer deposition, spray pyrolysis and microwave techniques Advances in electron microscopy, X-ray and electron spectroscopies New developments in electrical properties of materials, including high Tc superconductivity, lithium batteries, solid oxide fuel cells and smart windows Recent developments in optical properties, including fibre optics, solar cells and transparent conducting oxides Advances in magnetic properties including magnetoresistance and multiferroic materials Homogeneous and heterogeneous ceramics, characterization using impedance spectroscopy Thermoelectric materials, MXenes, low dimensional structures, memristors and many other functional materials Expanded coverage of glass, including metallic and fluoride glasses, cement and concrete, geopolymers, refractories and structural ceramics Overview of binary oxides of all the elements, their structures, properties and applications Featuring full color illustrations throughout, readers will also benefit from online supplementary materials including access to CrystalMaker® software and over 100 interactive crystal structure models. Perfect for advanced students seeking a detailed treatment of solid state chemistry, this new edition of Solid State Chemistry and its Applications will also earn a place as a desk reference in the libraries of experienced researchers in chemistry, crystallography, physics, and materials science.

Оглавление

Anthony R. West. Solid State Chemistry and its Applications

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Solid State Chemistry and its Applications

Preface

Companion Website

Crystal Viewer

Crystal Structure Library

Biography

Solid State Chemistry, an Overview of the Discipline: Chemistry – Solid State Chemistry – Materials Chemistry – Materials Science and Engineering

Materials chemistry. Synthesis – structure determination – physical properties – new materials. Materials science. Processing and fabrication – characterisation – optimisation of properties and testing – improved/new materials for engineering applications in products or devices

1 Crystal Structures, Crystal Chemistry, Symmetry and Space Groups

1.1 Unit Cells and Crystal Systems

1.2 Symmetry. 1.2.1 Rotational symmetry; symmetry elements and operations

1.2.2 Quasicrystals

1.2.3 Mirror symmetry

1.2.4 Centre of symmetry and inversion axes

1.2.5 Point symmetry and space symmetry

1.3 Symmetry and Choice of Unit Cell

1.4 Lattice, Bravais Lattice

1.5 Lattice Planes and Miller Indices

1.6 Indices of Directions

1.7 d‐Spacing Formulae

1.8 Crystal Densities and Unit Cell Contents

1.9 Description of Crystal Structures

1.10 Close Packed Structures – Cubic and Hexagonal Close Packing

1.11 Relationship Between Cubic Close Packed and Face Centred Cubic

1.12 Hexagonal Unit Cell and Close Packing

1.13 Density of Close Packed Structures

1.14 Unit Cell Projections and Atomic Coordinates

1.15 Materials that can be Described as Close Packed. 1.15.1 Metals

1.15.2 Alloys

1.15.3 Ionic structures

1.15.3.1 Tetrahedral and octahedral sites

1.15.3.2 Relative sizes of tetrahedral and octahedral sites

1.15.3.3 Location of tetrahedral and octahedral sites in an fcc unit cell; bond length calculations

1.15.3.4 Description of crystal structures; fractional atomic coordinates

1.15.4 Covalent network structures

1.15.5 Molecular structures

1.15.6 Fullerenes and fullerides

1.16 Structures Built of Space‐Filling Polyhedra

1.17 Some Important Structure Types. 1.17.1 Rock salt (NaCl), zinc blende or sphalerite (ZnS), fluorite (CaF2), antifluorite (Na2O)

1.17.1.1 Rock salt structure

1.17.1.2 Zinc blende (sphalerite) structure

1.17.1.3 Antifluorite/fluorite structure

1.17.1.4 Cuprite structure, Cu2O

1.17.1.5 Bond length calculations

1.17.2 Diamond

1.17.3 Wurtzite (ZnS) and nickel arsenide (NiAs)

1.17.4 Caesium chloride (CsCl)

1.17.5 Other AX structures

1.17.6 Rutile (TiO2), cadmium iodide (CdI2), cadmium chloride (CdCl2) and caesium oxide (Cs2O)

1.17.7 Perovskite

1.17.7.1 Tolerance factor

1.17.7.2 BaTiO3

1.17.7.3 Tilted perovskites: Glazer notation

1.17.7.4 CaCu3Ti4O12, CCTO

1.17.7.5 Anion‐deficient perovskites

1.17.7.6 Stoichiometry–property relations

1.17.7.7 Cation‐ordered perovskites

1.17.7.8 Hybrid organic–inorganic halide perovskites

1.17.7.9 Anti‐perovskites

1.17.7.10 Mixed anion perovskites: oxynitrides and oxyfluorides

1.17.7.11 Hexagonal perovskites

1.17.8 Rhenium trioxide (ReO3), perovskite tungsten bronzes, tetragonal tungsten bronzes and tunnel structures

1.17.9 Spinel

1.17.10 Olivine

1.17.11 Corundum, ilmenite and LiNbO3

1.17.12 Fluorite‐related structures, pyrochlore, weberite and rare earth sesquioxides

1.17.13 Garnet

1.17.14 Perovskite‐rock salt intergrowth structures: K2NiF4, Ruddlesden–Popper, Aurivillius and Dion Jacobsen phases and layered cuprate superconductors

1.17.15 The aluminium diboride structure (AlB2)

1.17.16 Silicate structures – some tips to understanding them

1.18 Point Groups and Space Groups

1.18.1 Point groups

1.18.2 Stereographic projections and equivalent positions

1.18.3 Point symmetry of molecules: general and special positions

1.18.4 Centrosymmetric and non‐centrosymmetric point groups

1.18.5 Space groups

1.18.5.1 Triclinic P

1.18.5.2 Monoclinic C2

1.18.5.3 Monoclinic C2/m

1.18.5.4 Orthorhombic P2221

1.18.5.5 Orthorhombic F222

1.18.5.6 Tetragonal I41

1.18.6 Space groups and crystal structures

1.18.6.1 The perovskite structure, SrTiO3

1.18.6.2 The rutile structure, TiO2

1.18.7 Systematic absences in diffraction patterns and space groups

2 Crystal Defects, Non‐stoichiometry and Solid Solutions. 2.1 Perfect and Imperfect Crystals

2.2 Types of Defect: Point Defects

2.2.1 Schottky defect

2.2.2 Frenkel defect

2.2.2.1 The Kroger–Vink notation for crystal defects

2.2.2.2 Thermodynamics of Schottky and Frenkel defect formation

Schottky defects

Frenkel defects

2.2.3 Colour centres

2.2.4 Vacancies and interstitials in non‐stoichiometric crystals: extrinsic and intrinsic defects

2.2.5 Defect clusters or aggregates

2.2.6 Interchanged atoms: order–disorder phenomena

2.3 Solid Solutions of Ionic Materials

2.3.1 Substitutional solid solutions

2.3.2 Interstitial solid solutions

2.3.3 More complex solid solution mechanisms: aliovalent substitution

2.3.3.1 Ionic compensation mechanisms

2.3.3.2 Electronic compensation: metals, semi‐ and superconductors

2.3.4 Thermodynamically stable and metastable solid solutions

2.3.5 Experimental methods for studying solid solutions. 2.3.5.1 X‐ray powder diffraction, XRD

2.3.5.2 Density measurements

2.3.5.3 Changes in other properties – thermal activity and DTA/DSC

2.4 Extended Defects

2.4.1 Crystallographic shear structures

2.4.2 Stacking faults

2.4.3 Subgrain boundaries and antiphase domains (boundaries)

2.4.4 When do defects in a structure become a new structure?

2.5 Dislocations and Mechanical Properties of Solids

2.5.1 Edge dislocations

2.5.2 Screw dislocations

2.5.3 Dislocation loops

2.5.4 Dislocations and crystal structure

2.5.5 Mechanical properties of metals

2.5.6 Dislocations, vacancies and stacking faults

2.5.7 Dislocations and grain boundaries

3 Bonding in Solids. 3.1 Overview: Ionic, Covalent, Metallic, van der Waals and Hydrogen Bonding in Solids

3.2 Ionic Bonding

3.2.1 Ions and ionic radii

3.2.2 Ionic structures – general principles

3.2.3 The radius ratio rules

3.2.4 Borderline radius ratios and distorted structures

3.2.5 Lattice energy of ionic crystals

3.2.6 Kapustinskii's equation

3.2.7 The Born–Haber cycle and thermochemical calculations

3.2.8 Stabilities of real and hypothetical ionic compounds. 3.2.8.1 Inert gas compounds

3.2.8.2 Lower and higher valence compounds

3.2.9 Effect of partial covalent bonding on crystal structures

3.2.10 Effective nuclear charge

3.2.11 Electronegativity and partially charged atoms

3.2.12 Coordinated polymeric structures – Sanderson's model

3.2.13 Mooser–Pearson plots and ionicities

3.2.14 Bond valence and bond length

3.2.15 Non‐bonding electron effects

3.2.15.1 d‐electron effects

3.2.15.2 Inert pair effect

3.3 Covalent Bonding

3.3.1 Particle‐wave duality, atomic orbitals, wavefunctions and nodes

3.3.2 Orbital overlap, symmetry and molecular orbitals

3.3.3 Valence bond theory, electron pair repulsion, hybridisation and oxidation states

3.4 Metallic Bonding and Band Theory

3.4.1 Band structure of metals

3.4.2 Band structure of insulators

3.4.3 Band structure of semiconductors: silicon

3.4.4 Band structure of inorganic solids

3.4.4.1 III–V, II–VI and I–VII compounds

3.4.4.2 Transition metal compounds

3.4.4.3 Fullerenes and graphite

3.5 Bands or Bonds: A Final Comment

4 Synthesis, Processing and Fabrication Methods. 4.1 General Observations

4.2 Solid State Reaction or Shake ‘n Bake Methods

4.2.1 Nucleation and growth, epitaxy and topotaxy

4.2.2 Practical considerations and some examples of solid state reactions

4.2.2.1 Li4SiO4

4.2.2.2 YBa2Cu3O7−δ

4.2.2.3 Na β/β″ alumina

4.2.3 Combustion synthesis

4.2.4 Mechanochemical synthesis

4.3 Low Temperature or Chimie Douce Methods

4.3.1 Alkoxide sol–gel method

4.3.1.1 Synthesis of MgAl2O4

4.3.1.2 Synthesis of silica glass

4.3.1.3 Spinning of alumina fibres

4.3.1.4 Preparation of indium tin oxide (ITO) and other coatings

4.3.1.5 Fabrication of YSZ ceramics

4.3.2 Sol‐gel method using oxyhydroxides; solution chemistry of Al and Fe

4.3.2.1 Synthesis of zeolites

4.3.2.2 Preparation of alumina‐based abrasives and films

4.3.3 Citrate gel and Pechini processes

4.3.4 Use of homogeneous, single‐source precursors

4.3.5 Hydrothermal and solvothermal synthesis

4.3.6 Microwave synthesis

4.3.7 Intercalation and deintercalation

4.3.7.1 Graphite intercalation compounds

4.3.7.2 Pillared clays and layered double hydroxides

4.3.7.3 Synthesis of graphene

4.3.8 Example of a difficult synthesis made possible by chimie douce methods: BiFeO3

4.3.9 Molten salt synthesis, MSS

4.4 Gas‐Phase Methods

4.4.1 Vapour‐phase transport

4.4.2 Chemical vapour deposition, CVD

4.4.2.1 Amorphous silicon

4.4.2.2 Diamond films

4.4.3 Sputtering and evaporation, pulsed laser deposition, PLD and molecular beam epitaxy, MBE

4.4.4 Atomic layer deposition, ALD

4.4.5 Aerosol synthesis and spray pyrolysis

4.5 High‐Pressure Methods

4.6 Crystal Growth

4.6.1 Czochralski method

4.6.2 Bridgman and Stockbarger methods

4.6.3 Zone melting

4.6.4 Precipitation from solution or melt: flux method

4.6.5 Verneuil flame fusion method

4.6.6 Skull melting

5 Crystallography and Diffraction Techniques. 5.1 General Comments: Molecular and Non‐Molecular Solids. 5.1.1 Identification of crystalline solids

5.1.2 Structure of non‐molecular crystalline solids

5.1.3 Defects, impurities and stoichiometry of crystalline solids

5.2 Characterisation of Solids

5.3 X‐Ray Diffraction. 5.3.1 Generation of X‐rays. 5.3.1.1 Laboratory sources utilising inner shell electronic transitions

5.3.1.2 Synchrotron X‐ray sources

5.3.2 Interaction of X‐rays with matter

5.3.3 Optical grating and diffraction of light

5.3.4 Crystals and diffraction of X‐rays

5.3.4.1 The Laue equations

5.3.4.2 Bragg’s law

5.3.5 X‐ray diffraction methods

5.3.6 The powder method – principles and uses

5.3.6.1 Focusing of X‐rays: theorem of a circle

5.3.6.2 Crystal monochromators

5.3.6.3 Powder diffractometers

5.3.6.4 Guinier focusing cameras

5.3.6.5 A powder pattern of a crystalline phase is its ‘fingerprint’

5.3.6.6 Powder patterns and crystal structures

5.3.6.7 Powder patterns from single crystals: the Gandolfi technique

5.3.7 Intensities

5.3.7.1 Scattering of X‐rays by an atom: atomic scattering factors or form factors

5.3.7.2 Scattering of X‐rays by a crystal – systematic absences

5.3.7.3 General equation for phase difference, δ

5.3.7.4 Intensities and structure factors

5.3.7.5 Temperature factors

5.3.7.6 R‐factors and structure determination

5.3.7.7 Structure refinement from powder data: Rietveld refinement

5.3.8 X‐ray crystallography and structure determination ‐ what is involved?

5.3.8.1 The Patterson method

5.3.8.2 Fourier methods

5.3.8.3 Direct methods

5.3.8.4 Electron density maps

5.4 Electron Diffraction

5.5 Neutron Diffraction

5.5.1 Crystal structure determination

5.5.2 Magnetic structure analysis

5.5.3 Inelastic scattering, soft modes and phase transitions

5.6 The Reciprocal Lattice

5.6.1 Real and reciprocal lattices

5.6.2 Direct observation of the reciprocal lattice and systematic absences (extinctions)

5.6.3 Diffraction and the reciprocal lattice: the Ewald sphere of reflection

5.6.4 Selected area electron diffraction

5.7 Total scattering and pair distribution function (PDF) analysis

5.8 Line broadening of XRD powder patterns, domain (particle) size measurement and strain effects

6 Other Characterisation Techniques: Microscopy, Spectroscopy, Thermal Analysis

6.1 Diffraction and Microscopic Techniques: What Do They Have in Common?

6.2 Optical and Electron Microscopy Techniques. 6.2.1 Optical microscopy

6.2.1.1 Polarising microscope

6.2.1.2 Reflected light microscope

6.2.2 Electron microscopy

6.2.2.1 Scanning electron microscopy

6.2.2.2 Electron probe microanalysis, EPMA, and energy‐dispersive X‐ray spectroscopy, EDS or EDX

6.2.2.3 Auger electron (emission) microscopy and spectroscopy, AES

6.2.2.4 Cathodoluminescence, CL

6.2.2.5 Transmission electron microscopy, TEM, and scanning transmission electron microscopy, STEM

6.2.2.6 Electron energy loss spectroscopy, EELS

6.2.2.7 High‐angle annular dark field, HAADF/Z‐contrast STEM

6.3 Spectroscopic Techniques

6.3.1 Vibrational spectroscopy: IR and Raman

6.3.2 Visible and ultraviolet (UV) spectroscopy

6.3.3 Nuclear magnetic resonance (NMR) spectroscopy

6.3.4 Electron spin resonance (ESR) spectroscopy

6.3.5 X‐ray spectroscopies: XRF, AEFS, EXAFS

6.3.5.1 Emission techniques

6.3.5.2 Absorption techniques

XANES

EXAFS

6.3.6 Electron spectroscopies: ESCA, XPS, UPS, AES, EELS

6.3.7 Mössbauer spectroscopy

6.4 Thermal Analysis (TA)

6.4.1 Thermogravimetry (TG)

6.4.2 Differential thermal analysis (DTA) and differential scanning calorimetry (DSC)

6.4.3 Applications

6.5 Strategy to Identify, Analyse and Characterise ‘Unknown’ Solids

7 Phase Diagrams and Their Interpretation

7.1 The Phase Rule, the Condensed Phase Rule and Some Definitions

7.2 One‐Component Systems

7.2.1 The system H2O

7.2.2 The system SiO2

7.2.3 Condensed one‐component systems

7.3 Two‐Component Condensed Systems

7.3.1 A simple eutectic system

7.3.1.1 Liquidus and solidus

7.3.1.2 Eutectic

7.3.1.3 Lever rule

7.3.1.4 Eutectic reaction

7.3.1.5 The liquidus, saturation solubilities and freezing point depression

7.3.2 Binary systems with compounds

7.3.2.1 Congruent melting

7.3.2.2 Incongruent melting, peritectic point, peritectic reaction

7.3.2.3 Non‐equilibrium effects

7.3.2.4 Upper and lower limits of stability

7.3.3 Binary systems with solid solutions. 7.3.3.1 Complete solid solution

7.3.3.2 Fractional crystallisation

7.3.3.3 Thermal maxima and minima

7.3.3.4 Partial solid solution systems

7.3.4 Binary systems with solid–solid phase transitions

7.3.5 Binary systems with phase transitions and solid solutions: eutectoids and peritectoids

7.3.6 Binary systems with liquid immiscibility: MgO–SiO2

7.3.7 Some technologically important phase diagrams. 7.3.7.1 The system Fe–C: iron and steel making

7.3.7.2 The system CaO–SiO2: cement manufacture

7.3.7.3 The system Na–S: Na/S batteries

7.3.7.4 The system Na2O–SiO2: glass making

7.3.7.5 The system Li2O–SiO2: metastable phase separation and synthetic opals

7.3.7.6 Purification of semiconducting Si by zone refining

7.3.7.7 The system ZrO2–Y2O3: yttria‐stabilised zirconia, YSZ, solid electrolyte

7.3.7.8 The system Bi2O3–Fe2O3: multiferroic BiFeO3

7.4 Some Tips and Guidelines for Constructing Binary Phase Diagrams

7.5 Ternary Systems

7.5.1 Subsolidus equilibria

7.5.2 Subsolidus equilibria with solid solutions

7.5.3.1 Solid‐liquid phase diagrams. 7.5.3.1 Simple ternary eutectic system

7.5.3.2 Ternary systems containing binary compounds

7.5.3.3 Ternary systems containing solid solutions

7.5.3.3 Analogies between ternary phase diagrams, crystallisation pathways, geographical contour maps and hill walking

7.5.3.5 Some important ternary phase diagrams

7.6 Phase Transitions

7.6.1 What is a phase transition?

7.6.2 Buerger's classification: reconstructive and displacive transitions

7.6.3 Thermodynamic classification of phase transitions

7.6.4 Applications of G–T diagrams; stable and metastable phases

7.6.5 Representation of phase transitions on phase diagrams

7.6.6 Kinetics of phase transitions

7.6.7 Critical size of nuclei

7.6.8 Rate equations. 7.6.8.1 Nucleation rate

7.6.8.2 Overall transformation rate; the Avrami equation

7.6.8.3 Time–temperature–transformation (TTT) diagrams

7.6.9 Kinetics of phase transitions and solid state reactions

7.6.10 Crystal chemistry and phase transitions. 7.6.10.1 Structural changes with increasing temperature and pressure

7.6.10.2 Martensitic transformations

7.6.10.3 Order–disorder transitions

8 Electrical Properties. 8.1 Survey of Electrical Properties and Electrical Materials

8.2 Metallic Conductivity

8.2.1 Organic metals: conjugated systems. 8.2.1.1 Polyacetylene

8.2.1.2 Poly‐p‐phenylene and polypyrrole

8.2.2 Organic metals: charge‐transfer complexes

8.3 Superconductivity

8.3.1 The property of zero resistance

8.3.2 Perfect diamagnetism; the Meissner effect

8.3.3 Critical temperature Tc, critical field Hc and critical current Jc

8.3.4 Type I and type II superconductors: the vortex (mixed) state

8.3.5 Survey of superconducting materials

8.3.6 Crystal chemistry of cuprate perovskites

8.3.7 YBa2Cu3O7−δ, YBCO

8.3.7.1 Crystal structure

8.3.7.2 Atom valences and the superconducting mechanism

8.3.7.3 Oxygen content of YBa2Cu3O7−δ

8.3.7.4 Determination of oxygen content, 7−δ

8.3.8 Fullerides

8.3.9 Applications of superconductors

8.4 Semiconductivity

8.4.1 Elemental and compound semiconductors with diamond and zinc blende structures

8.4.2 Electrical properties of semiconductors

8.4.3 Oxide semiconductors

8.4.4 Applications of semiconductors

8.5 Ionic Conductivity

8.5.1 Alkali halides: vacancy conduction

8.5.1.1 Activation energy for ion hopping: geometric considerations

8.5.1.2 Ionic conductivity of NaCl crystals

8.5.1.3 Extrinsic conductivity in NaCl: control by aliovalent doping

8.5.2 Silver chloride: interstitial conduction

8.5.3 Alkaline earth fluorides

8.5.4 Solid electrolytes (or fast ion conductors, superionic conductors) 8.5.4.1 General considerations

8.5.4.2 β‐Alumina

Crystal structures of β‐ and β″‐aluminas

8.5.4.3 Nasicon

8.5.4.4 Hollandites and priderites

8.5.4.5 Silver and copper ion conductors

8.5.4.6 Fluoride ion conductors

8.5.4.7 Oxide ion conductors

8.5.4.8 Li+ ion conductors

8.5.4.9 Proton conductors

8.5.4.10 Mixed ionic/electronic conductors

8.5.4.11 Applications of solid electrolytes and mixed conductors

Thermodynamic measurements

Sodium‐sulphur and Zebra batteries

Miniature cells, heart pacemakers

Lithium batteries

Anodes

Electrolytes

Cathodes

Lithium‐air and lithium sulphur batteries

Electrochromic devices, smart windows

Gas sensors

Transport number measurements

Solid oxide fuel cells, SOFCs; steam electrolysers; oxygen pumps

8.6 Dielectric Materials

8.6.1 From dielectrics to conductors

8.7 Ferroelectrics

8.8 Pyroelectrics

8.9 Piezoelectrics

8.10 Applications of Ferro‐, Pyro‐ and Piezoelectrics

9 Magnetic Properties. 9.1 Physical Properties

9.1.1 Behaviour of substances in a magnetic field

9.1.2 Effects of temperature: Curie and Curie–Weiss laws

9.1.3 Magnetic moments

9.1.4 Mechanisms of ferro‐ and antiferromagnetic ordering: superexchange

9.1.5 Some more definitions

9.2 Magnetic Materials, their Structures and Properties. 9.2.1 Metals and alloys

9.2.2 Transition metal monoxides

9.2.3 Transition metal dioxides

9.2.4 Spinels

9.2.5 Garnets

9.2.6 Ilmenites and perovskites

9.2.7 Magnetoplumbites

9.3 Applications: Structure–Property Relations

9.3.1 Transformer cores

9.3.2 Permanent magnets

9.3.3 Magnetic information storage

9.4 Recent Developments. 9.4.1 Magnetoresistance: giant and colossal

9.4.2 Multiferroics

10 Optical Properties: Luminescence, Lasers and Transparent Conductors. 10.1 Visible Light and the Electromagnetic Spectrum

10.2 Sources of Light, Thermal Sources, Black Body Radiation and Electronic Transitions

10.3 Scattering Processes: Reflection, Diffraction and Interference

10.4 Luminescence and Phosphors

10.5 Configurational Coordinate Model

10.6 Some Phosphor Materials

10.7 Anti‐Stokes Phosphors

10.8 Stimulated Emission, Amplification of Light and Lasers

10.8.1 The ruby laser

10.8.2 Neodymium lasers

10.8.3 Semiconductor lasers and the light‐emitting diode, LED

10.9 Photodetectors

10.10 Fibre‐Optics

10.11 Solar Cells and Photovoltaics

10.12 Transparent Conducting Oxides, TCOs, Smart Windows and Energy Management of Buildings

10.12.1 Indium tin oxide, ITO

10.12.2 Applications

10.12.3 p‐type TCOs

10.13 Photonic Crystals, Photonic Bandgaps and Opals

11 Heterogeneous Materials, Electroceramics and Impedance Spectroscopy

11.1 Homogeneous and Heterogeneous Solids

11.2 Resistivities and Permittivities of Materials; The Parallel RC Element

11.3 Impedance Formalisms, Alternating Currents and Equivalent Circuits

11.4 Applications of Impedance Spectroscopy

12 Thermal and Thermoelectric Properties. 12.1 Thermoelectric Effects

12.1.1 Thermocouples

12.1.2 Thermoelectric power generation

12.2 Thermal Properties: Heat Capacity, Thermal Conductivity, Thermal Expansion. 12.2.1 Heat capacity

12.2.2 Thermal conductivity

12.2.3 Thermal expansion

13 Functional Materials: Some Important Examples

13.1 TiO2: Rutile, Anatase and Other Ti–O Phases

13.2 Ca12Al14O33, Mayenite: An Oxide Ion Conductor, Component of Cement and a Superconducting Electride

13.2.1 2D electrides

13.3 Zinc Oxide, ZnO for Varistor and Optoelectronic Applications

13.4 Two‐dimensional Structures: MXenes

13.5 Low‐dimensional Solids: Graphene, BN, Transition Metal Dichalcogenides and Black Phosphorus

14 Glass

14.1 Factors That Influence Glass Formation

14.1.1 Viscosity

14.1.2 Structural effects: Zachariasen’s rules

14.1.3 Other structural and bonding factors

14.2 Thermodynamics of Glass Formation; the Behaviour of Liquids on Cooling

14.3 Kinetics of Crystallisation and Glass Formation

14.4 Structure of Glasses

14.4.1 Vitreous silica and stochasticity

14.4.2 Silicate glasses

14.4.3 Vitreous B2O3 and borate glasses

14.5 Liquid Immiscibility and Phase Separation in Glasses

14.5.1 Structural theories of liquid immiscibility

14.5.2 Thermodynamics of liquid immiscibility

14.5.3 Mechanisms of phase separation: nucleation and growth; spinodal decomposition

14.6 Viscosity of Glasses and Melts

14.7 Electrical (Ionic) Conductivity of Glass and the Mixed Alkali Effect

14.8 Bonds, Bands and Semiconducting Glasses

14.8.1 Chalcogenide glasses

14.8.1.1 Sulphur

14.8.1.2 Selenium

14.8.1.3 Tellurium

14.8.1.4 More complex chalcogenide glasses: optical properties

14.8.2 Electrical properties

14.8.3 The photocopying process

14.8.4 Electrical switching and memory effects

14.9 Mechanical Properties and Strengthening of Glass

14.10 Commercial Silicate and Borate Glasses

14.10.1 Optical properties

14.11 Metallic Glasses

14.12 Fluoride Glasses

14.13 Glass‐Ceramics

14.13.1 Some important glass‐ceramic compositions

14.13.2 Properties of glass‐ceramics

14.13.3 Applications of glass‐ceramics

14.14 Bioglasses

15 Structural Materials: Cement, Refractories and Structural Ceramics. 15.1 Cements

15.1.1 Manufacture of Portland cement

15.1.2 Phase diagram considerations

15.1.3 Polymorphism and crystal structures of the calcium silicates and aluminates

15.1.4 Silicate chemistry and silicate structures

15.1.5 Hydration of Portland cement

15.1.6 Types of Portland cement

15.1.7 Alkali activation and geopolymers

15.1.8 Autoclaved products

15.1.9 Aluminous cement, high alumina cement and refractory concrete

15.1.10 Macro‐defect‐free (MDF) Cement

15.1.11 Acid‐base cements: oxychloride (Sorel) and glass‐ionomer cements

15.2 Refractories and Structural Ceramics

15.2.1 Microstructure or texture of refractories and ceramics

15.2.2 Refractory materials and structural ceramics

16 Oxides of the Elements, Their Properties and Uses

16.1 Oxides of s‐Block Elements

16.2 Acid‐Base Classification of Oxides

16.3 Oxides of p‐Block Elements

16.4 Oxides of d‐block (Transition) Elements

16.5 Oxides of Lanthanides and Actinides

16.6 Oxides of the Elements Overview. Actinium (Rn core) 7s26d1

Aluminium (Ne core) 3s23p1

Antimony (Kr core) 4d105s25p3

Arsenic (Ar core) 3d104s24p3

Barium (Xe core) 6s2

Beryllium (He core) 2s2

Bismuth (Xe core) 4f145d106s26p3

Boron (He core) 2s22p1

Bromine (Ar core) 3d104s24p5

Cadmium (Kr core) 4d105s2

Caesium (Xe core) 6s1

Calcium (Ar core) 4s2

Carbon (He core) 2s22p2

Cerium (Xe core) 4f15d16s2

Chlorine (Ne core) 3s23p5

Chromium (Ar core) 3d44s2

Cobalt (Ar core) 3d74s2

Copper (Ar core) 3d104s1

Dysprosium (Xe core) 4f106s2

Erbium (Xe core) 4f126s2

Europium (Xe core) 4f76s2

Gadolinium (Xe core) 4f75d16s2

Gallium (Ar core) 3d104s24p1

Germanium (Ar core) 3d104s24p2

Gold (Xe core) 4f145d106s1

Hafnium (Xe core) 4f145d26s2

Holmium (Xe core) 4f116s2

Indium (Kr core) 3d104s24p1

Iodine (Kr core) 4d105s25p5

Iridium (Xe core) 4f145d76s2

Iron (Ar core) 3d64s2

Lanthanum (Xe core) 5d16s2

Lead (Xe core) 4f145d106s26p2

Lithium (He core) 2s1

Lutetium (Xe core) 4f145d16s2

Magnesium (Ne core) 3s2

Manganese (Ar core) 3d54s2

Mercury (Xe core) 4f145d106s2

Molybdenum (Kr core) 4d55s1

Neodymium (Xe core) 4f46s2

Nickel (Ar core) 3d84s2

Niobium (Kr core) 4d35s2

Nitrogen (He core) 2s22p3

Osmium (Xe core) 4f145d66s2

Palladium (Kr core) 4d10

Phosphorus (Ne core) 3s23p3

Platinum (Xe core) 4f145d96s1

Polonium (Xe core) 4f145d106s26p4

Potassium (Ar core) 4s1

Praseodymium (Xe core) 4f36s2

Promethium (Xe core) 4f56s2

Protactinium (Rn core) 5f26d17s2

Rhenium (Xe core) 4f145d56s2

Rhodium (Kr core) 4d85s1

Rubidium (Kr core) 5s1

Ruthenium (Kr core) 4d75s1

Samarium (Xe core) 4f66s2

Scandium (Ar core) 3d14s2

Selenium (Ar core) 3d104s24p4

Silicon (Ne core) 3s23p2

Silver (Kr core) 5s14d10

Sodium (Ne core) 3 s 1

Strontium (Kr core) 5s2

Sulphur (Neon core) 3s23p4

Tantalum (Xe core) 4f145d36s2

Technetium (Kr core) 4d55s2

Tellurium (Kr core) 4d105s25p4

Terbium (Xe core) 4f96s2

Thallium (Xe core) 4f145d106s26p1

Thorium (Rn core) 6d27s2

Thulium (Xe core) 4f136s2

Tin (Kr core) 3d104s24p2

Titanium (Ar core) 3d24s2

Tungsten (Xe core) 4f145d46s2

Uranium (Rn core) 5f36d17s2

Vanadium (Ar core) 3d34s2

Xenon (Kr core) 4d105s25p6

Ytterbium (Xe core) 4f146s2

Yttrium (Kr core) 4d15s2

Zinc (Ar core) 3d104s2

Zirconium (Kr core) 4d25s2

Appendix A Interplanar Spacings and Unit Cell Volumes

Appendix B Model Building

Equipment Needed

Sphere Packing Arrangements

To show the relation between a ccp structure and an fcc unit cell

To show the cp layers and unit cell of an hcp stacking sequence

Polyhedral structures

Appendix C Geometrical Considerations in Crystal Chemistry. Notes on the Geometry of Tetrahedra and Octahedra. Relation of a tetrahedron to a cube

Relation between distances M–X and X–X in a tetrahedron

Angle XMX of a tetrahedron

Symmetry of a tetrahedron

Centre of gravity of a tetrahedron

Relation of an octahedron to a cube

Hexagonal unit cell: proof that the axial ratio, c/a, ideally equals 1.633

Appendix D The Elements and Some of Their Properties

Appendix E The 32 Crystallographic Point Groups

Appendix F The Arrhenius Equation for Ionic Conductivity

Reference

Appendix G A Guide to the Use of Electrode Potentials

Further Reading

General

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Questions. Questions

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Second Edition

ANTHONY R. WEST

.....

The need to characterise solid state materials across the length scales from atomic through to macro is, however, part of a much bigger picture that includes the targeted synthesis of materials with different dimensionality and size. This takes us into the realms of nanomaterials and nanotechnology. Nanomaterials have reduced particle size and much increased net surface area, but also include many examples of low dimensionality, typified by the carbon nanostructures of zero‐dimensional fullerenes C60 and C70, one‐dimensional carbon nanotubes and two‐dimensional graphene sheets.

Physical properties of nanomaterials often diverge from those expected based on the known behaviour of macro‐sized and three‐dimensional materials. Thus, quantum confinement effects lead to band structure modification and variable electronic and optical properties in colloidal systems. The importance of surface structure and properties is increasingly dominant in nano‐sized materials because most of the material is close to, or at, a surface. Surface structures always differ from bulk structures because of modified coordination environments and bonding arrangements, but in the study of bulk materials, surface effects are frequently ignored in favour of the dominant bulk structure and properties. They cannot be ignored in nanomaterials however, because nano‐size local bonding/structure effects underpin industries that are often based on and include heterogeneous catalysis, sensors, smart windows and solar cell technology.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Solid State Chemistry and its Applications
Подняться наверх