Foundations of Space Dynamics

Foundations of Space Dynamics
Автор книги: id книги: 1878848     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 9488,64 руб.     (92,71$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119455325 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author—a noted expert on the topic—covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity-gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.

Оглавление

Ashish Tewari. Foundations of Space Dynamics

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Foundations of Space Dynamics

Aerospace Series – Recently Published Titles

Preface

1 Introduction

1.1 Space Flight

1.1.1 Atmosphere as Perturbing Environment

1.1.2 Gravity as the Governing Force

1.1.3 Topics in Space Dynamics

1.2 Reference Frames and Time Scales

1.2.1 Sidereal Frame

1.2.2 Celestial Frame

1.2.3 Synodic Frame

1.2.4 Julian Date

1.3 Classification of Space Missions

Exercises

References

Note

2 Dynamics

2.1 Notation and Basics

2.2 Plane Kinematics

2.3 Newton's Laws

2.4 Particle Dynamics

2.5 The n‐Body Problem

2.6 Dynamics of a Body

2.7 Gravity Field of a Body

2.7.1 Legendre Polynomials

2.7.2 Spherical Coordinates

2.7.3 Axisymmetric Body

2.7.4 Spherical Body with Radially Symmetric Mass Distribution

Exercises

References

Notes

Chapter 3 Keplerian Motion

3.1 The Two‐Body Problem

3.2 Orbital Angular Momentum

3.3 Orbital Energy Integral

3.4 Orbital Eccentricity

3.5 Orbit Equation

3.5.1 Elliptic Orbit

3.5.2 Parabolic Orbit

3.5.3 Hyperbolic Orbit

3.5.4 Rectilinear Motion

3.6 Orbital Velocity and Flight Path Angle

3.7 Perifocal Frame and Lagrange's Coefficients

Exercises

Notes

Chapter 4 Time in Orbit

4.1 Position and Velocity in an Elliptic Orbit

4.2 Solution to Kepler's Equation

4.2.1 Newton's Method

4.2.2 Solution by Bessel Functions

4.3 Position and Velocity in a Hyperbolic Orbit

4.4 Position and Velocity in a Parabolic Orbit

4.5 Universal Variable for Keplerian Motion

Exercises

References

5 Orbital Plane

5.1 Rotation Matrix

5.2 Euler Axis and Principal Angle

5.3 Elementary Rotations and Euler Angles

5.4 Euler‐Angle Representation of the Orbital Plane

5.4.1 Celestial Reference Frame

5.4.2 Local‐Horizon Frame

5.4.3 Classical Euler Angles

5.5 Planet‐Fixed Coordinate System

Exercises

6 Orbital Manoeuvres

6.1 Single‐Impulse Orbital Manoeuvres

6.2 Multi‐impulse Orbital Transfer

6.2.1 Hohmann Transfer

6.2.2 Rendezvous in Circular Orbit

6.2.3 Outer Bi‐elliptic Transfer

6.3 Continuous Thrust Manoeuvres

6.3.1 Planar Manoeuvres

6.3.2 Constant Radial Acceleration from Circular Orbit

6.3.3 Constant Circumferential Acceleration from Circular Orbit

6.3.4 Constant Tangential Acceleration from Circular Orbit

Exercises

References

7 Relative Motion in Orbit

7.1 Hill‐Clohessy‐Wiltshire Equations

7.2 Linear State‐Space Model

7.3 Impulsive Manoeuvres About a Circular Orbit

7.3.1 Orbital Rendezvous

7.4 Keplerian Relative Motion

Exercises

8 Lambert's Problem

8.1 Two‐Point Orbital Transfer

8.1.1 Transfer Triangle and Terminal Velocity Vectors

8.2 Elliptic Transfer

8.2.1 Locus of the Vacant Focii

8.2.2 Minimum‐Energy and Minimum‐Eccentricity Transfers

8.3 Lambert's Theorem

8.3.1 Time in Elliptic Transfer

8.3.2 Time in Hyperbolic Transfer

8.3.3 Time in Parabolic Transfer

8.4 Solution to Lambert's Problem

8.4.1 Parameter of Transfer Orbit

8.4.2 Stumpff Function Method

Algorithm No. 1

Algorithm No. 2

8.4.3 Hypergeometric Function Method

Exercises

References

9 Orbital Perturbations

9.1 Perturbing Acceleration

9.2 Osculating Orbit

9.3 Variation of Parameters

9.3.1 Lagrange Brackets

9.4 Lagrange Planetary Equations

9.5 Gauss Variational Model

9.6 Variation of Vectors

9.7 Mean Orbital Perturbation

9.8 Orbital Perturbation Due to Oblateness

9.8.1 Sun‐Synchronous Orbits

9.8.2 Molniya Orbits

9.9 Effects of Atmospheric Drag

9.9.1 Life of a Satellite in a Low Circular Orbit

9.9.2 Effect on Orbital Angular Momentum

9.9.3 Effect on Orbital Eccentricity and Periapsis

9.10 Third‐Body Perturbation

9.10.1 Lunar and Solar Perturbations on an Earth Satellite

9.10.2 Sphere of Influence and Conic Patching

9.11 Numerical Methods for Perturbed Keplerian Motion

9.11.1 Cowell's Method

9.11.2 Encke's Method

Exercises

References

10 Three‐Body Problem

10.1 Equations of Motion

10.2 Particular Solutions by Lagrange

Equilibrium Solutions in a Rotating Frame

Conic Section Solutions

10.3 Circular Restricted Three‐Body Problem

10.3.1 Equations of Motion in the Inertial Frame

10.4 Non‐dimensional Equations in the Synodic Frame

10.5 Lagrangian Points and Stability

10.5.1 Stability Analysis

10.6 Orbital Energy and Jacobi's Integral

10.6.1 Zero‐Relative‐Speed Contours

10.6.2 Tisserand's Criterion

10.7 Canonical Formulation

10.8 Special Three‐Body Trajectories

10.8.1 Perturbed Orbits About a Primary

10.8.2 Free‐Return Trajectories

Exercises

Reference

11 Attitude Dynamics

11.1 Euler's Equations of Attitude Kinetics

11.2 Attitude Kinematics

11.3 Rotational Kinetic Energy

11.4 Principal Axes

11.5 Torque‐Free Rotation of Spacecraft

11.5.1 Stability of Rotational States

11.6 Precession and Nutation

11.7 Semi‐Rigid Spacecraft

11.7.1 Dual‐Spin Stability

11.8 Solution to Torque‐Free Euler's Equations

11.8.1 Axisymmetric Spacecraft

11.8.2 Jacobian Elliptic Functions

11.8.3 Runge‐Kutta Solution

11.9 Gravity‐Gradient Stabilization

Exercises

12 Attitude Manoeuvres

12.1 Impulsive Manoeuvres with Attitude Thrusters

12.1.1 Single‐Axis Rotation

12.1.2 Rigid Axisymmetric Spin‐Stabilized Spacecraft

12.1.3 Spin‐Stabilized Asymmetric Spacecraft

12.2 Attitude Manoeuvres with Rotors

12.2.1 Reaction Wheel

12.2.2 Control‐Moment Gyro

12.2.3 Variable‐Speed Control‐Moment Gyro

Exercises

References

A Numerical Solution of Ordinary Differential Equations

A.1 Fixed‐Step Runge‐Kutta Algorithms

A.2 Variable‐Step Runge‐Kutta Algorithms

A.3 Runge‐Kutta‐Nyström Algorithms

References

B Jacobian Elliptic Functions

Reference

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

First Edition

Ashish Tewari

.....

Thus the translational motion of the body is described by the motion of its centre of mass, as if all the mass were concentrated at that point.

Figure 2.3 A body as a collection of large number of particles of elemental mass, , with centre of mass o.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Foundations of Space Dynamics
Подняться наверх