Finite Element Analysis

Finite Element Analysis
Автор книги: id книги: 2062801     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 11104 руб.     (108,25$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119426462 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Finite Element Analysis <p><b>An updated and comprehensive review of the theoretical foundation of the finite element method</b> <p>The revised and updated second edition of <i>Finite Element Analysis: Method, Verification, and Validation</i> offers a comprehensive review of the theoretical foundations of the finite element method and highlights the fundamentals of solution verification, validation, and uncertainty quantification. Written by noted experts on the topic, the book covers the theoretical fundamentals as well as the algorithmic structure of the finite element method. The text contains numerous examples and helpful exercises that clearly illustrate the techniques and procedures needed for accurate estimation of the quantities of interest. In addition, the authors describe the technical requirements for the formulation and application of design rules. <p>Designed as an accessible resource, the book has a companion website that contains a solutions manual, PowerPoint slides for instructors, and a link to finite element software. This important text: <ul><li>Offers a comprehensive review of the theoretical foundations of the finite element method</li> <li>Puts the focus on the fundamentals of solution verification, validation, and uncertainty quantification</li> <li>Presents the techniques and procedures of quality assurance in numerical solutions of mathematical problems</li> <li>Contains numerous examples and exercises</li></ul> <p>Written for students in mechanical and civil engineering, analysts seeking professional certification, and applied mathematicians, <i>Finite Element Analysis: Method, Verification, and Validation, Second Edition</i> includes the tools, concepts, techniques, and procedures that help with an understanding of finite element analysis.

Оглавление

Barna Szabó. Finite Element Analysis

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

WILEY SERIES IN COMPUTATIONAL MECHANICS

Finite Element Analysis. Method, Verification and Validation

Preface to the second edition

Preface to the first edition

Notes

Preface

About the companion website

1 Introduction to the finite element method

1.1 An introductory problem

The choice of basis functions

Summary of the main points

1.2 Generalized formulation

1.2.1 The exact solution

Summary of the main points

1.2.2 The principle of minimum potential energy

1.3 Approximate solutions

1.3.1 The standard polynomial space

Lagrange shape functions

Legendre shape functions

1.3.2 Finite element spaces in one dimension

1.3.3 Computation of the coefficient matrices

Computation of the stiffness matrix

Computation of the Gram matrix

1.3.4 Computation of the right hand side vector

1.3.5 Assembly

1.3.6 Condensation

1.3.7 Enforcement of Dirichlet boundary conditions

1.4 Post‐solution operations

1.4.1 Computation of the quantities of interest

Computation of uFE(x0)

Direct computation of

Indirect computation of in node points

Nodal forces

1.5 Estimation of error in energy norm

1.5.1 Regularity

1.5.2 A priori estimation of the rate of convergence

1.5.3 A posteriori estimation of error

Error estimation based on extrapolation

Examples

1.5.4 Error in the extracted QoI

1.6 The choice of discretization in 1D

1.6.1 The exact solution lies in ,

1.6.2 The exact solution lies in ,

1.7 Eigenvalue problems

1.8 Other finite element methods

1.8.1 The mixed method

1.8.2 Nitsche's method

Stabilization

Numerical example

Notes

2 Boundary value problems

2.1 Notation

2.2 The scalar elliptic boundary value problem

2.2.1 Generalized formulation

2.2.2 Continuity

2.3 Heat conduction

2.3.1 The differential equation

2.3.2 Boundary and initial conditions

2.3.3 Boundary conditions of convenience

Numerical treatment of periodic functions

2.3.4 Dimensional reduction

Planar problems

Axisymmetric models

Heat conduction in a bar

2.4 Equations of linear elasticity – strong form

2.4.1 The Navier equations

2.4.2 Boundary and initial conditions

2.4.3 Symmetry, antisymmetry and periodicity

2.4.4 Dimensional reduction in linear elasticity

Planar elastostatic models: Notation

Plane strain

Plane stress

The Navier equations

Axisymmetric elastostatic models

2.4.5 Incompressible elastic materials

2.5 Stokes flow

2.6 Generalized formulation of problems of linear elasticity

2.6.1 The principle of minimum potential energy

Isotropic elasticity

2.6.2 The RMS measure of stress

2.6.3 The principle of virtual work

2.6.4 Uniqueness

2.7 Residual stresses

2.8 Chapter summary

Notes

3 Implementation

3.1 Standard elements in two dimensions

3.2 Standard polynomial spaces

3.2.1 Trunk spaces

3.2.2 Product spaces

3.3 Shape functions

3.3.1 Lagrange shape functions

Quadrilateral elements

Triangular elements

3.3.2 Hierarchic shape functions

Quadrilateral elements

Triangular elements

3.4 Mapping functions in two dimensions

3.4.1 Isoparametric mapping

Isoparametric mapping for quadrilateral elements

Isoparametric mapping for triangular elements

3.4.2 Mapping by the blending function method

3.4.3 Mapping algorithms for high order elements

Rigid body rotations

3.5 Finite element spaces in two dimensions

3.6 Essential boundary conditions

3.7 Elements in three dimensions

3.7.1 Mapping functions in three dimensions

3.8 Integration and differentiation

3.8.1 Volume and area integrals

3.8.2 Surface and contour integrals

3.8.3 Differentiation

3.9 Stiffness matrices and load vectors

3.9.1 Stiffness matrices

3.9.2 Load vectors

Volume forces

Surface tractions

Thermal loading

Summary of the main points

3.10 Post‐solution operations

3.11 Computation of the solution and its first derivatives

3.12 Nodal forces

3.12.1 Nodal forces in the h‐version

3.12.2 Nodal forces in the p‐version

3.12.3 Nodal forces and stress resultants

3.13 Chapter summary

Notes

4 Pre‐ and postprocessing procedures and verification

4.1 Regularity in two and three dimensions

4.2 The Laplace equation in two dimensions

4.2.1 2D model problem,

4.2.2 2D model problem,

Dirichlet boundary condition

4.2.3 Computation of the flux vector in a given point

4.2.4 Computation of the flux intensity factors

Path‐independent integral

Orthogonality

Extraction of

4.2.5 Material interfaces

The Steklov method

4.3 The Laplace equation in three dimensions

4.4 Planar elasticity

4.4.1 Problems of elasticity on an L‐shaped domain

4.4.2 Crack tip singularities in 2D

Computation of stress intensity factors

4.4.3 Forcing functions acting on boundaries

Concentrated force

Step function

4.5 Robustness

4.6 Solution verification

Solution

Discussion

Notes

5 Simulation

5.1 Development of a very useful mathematical model

5.1.1 The Bernoulli‐Euler beam model

5.1.2 Historical notes on the Bernoulli‐Euler beam model

5.2 Finite element modeling and numerical simulation

5.2.1 Numerical simulation

5.2.2 Finite element modeling

5.2.3 Calibration versus tuning

Calibration

Tuning

5.2.4 Simulation governance

5.2.5 Milestones in numerical simulation

5.2.6 Example: The Girkmann problem

5.2.7 Example: Fastened structural connection

Model 1: Strength of materials

Model 2: The fasteners are modeled by linear springs

Model 3: The fasteners are modeled by nonlinear springs

Model 4: The three‐dimensional contact problem

Discussion

5.2.8 Finite element model

Equilibrium of nodal forces

Discussion

5.2.9 Example: Coil spring with displacement boundary conditions

Solution of the linear model

Solution of the nonlinear model

Discussion

5.2.10 Example: Coil spring segment

Solution

Discussion

Notes

6 Calibration, validation and ranking

6.1 Fatigue data

6.1.1 Equivalent stress

6.1.2 Statistical models

6.1.3 The effect of notches

6.1.4 Formulation of predictors of fatigue life

6.2 The predictors of Peterson and Neuber

6.2.1 The effect of notches – calibration

6.2.2 The effect of notches – validation

Edge notched specimen with inch

Edge notched specimen with r = 0.0035 inch

Conclusion

6.2.3 Updated calibration

6.2.4 The fatigue limit

6.2.5 Discussion

6.3 The predictor Gα

6.3.1 Calibration of

6.3.2 Ranking

6.3.3 Comparison of Gα with Peterson′s revised predictor

6.4 Biaxial test data

6.4.1 Axial, torsional and combined in‐phase loading

6.4.2 The domain of calibration

6.4.3 Out‐of‐phase biaxial loading

Extension A

Extension B

Ranking

Predictive performance

Selection of the prior

Inferential statistics

Validation

The updated domain of calibration

The number of experiments

6.5 Management of model development

6.5.1 Obstacles to progress

Notes

7 Beams, plates and shells

7.1 Beams

7.1.1 The Timoshenko beam

Shear correction

Numerical solution

Shear locking in Timoshenko beams

7.1.2 The Bernoulli‐Euler beam

Numerical solution

7.2 Plates

7.2.1 The Reissner‐Mindlin plate

Shear correction for plate models

7.2.2 The Kirchhoff plate

Enforcement of continuity

7.2.3 The transverse variation of displacements

Case A: The material properties are independent of

Case B: The material properties are symmetric functions of

7.3 Shells

The Naghdi shell model

The Novozhilov‐Koiter shell model

7.3.1 Hierarchic thin solid models

7.4 Chapter summary

Notes

8 Aspects of multiscale models

8.1 Unidirectional fiber‐reinforced laminae

8.1.1 Determination of material constants

8.1.2 The coefficients of thermal expansion

8.1.3 Examples

Hexagonal pattern

Square pattern

Comparison

8.1.4 Localization

8.1.5 Prediction of failure in composite materials

Example

8.1.6 Uncertainties

8.2 Discussion

Notes

9 Non‐linear models

9.1 Heat conduction

9.1.1 Radiation

9.1.2 Nonlinear material properties

9.2 Solid mechanics

9.2.1 Large strain and rotation

9.2.2 Structural stability and stress stiffening

9.2.3 Plasticity

Notation

Assumptions

Incremental stress‐strain relationship

The deformation theory of plasticity

9.2.4 Mechanical contact

Gap elements in two dimensions

Outline of the algorithm

9.3 Chapter summary

Notes

Appendix A Definitions

A.1 Normed linear spaces, linear functionals and bilinear forms

A.1.1 Normed linear spaces

A.1.2 Linear forms

A.1.3 Bilinear forms

A.2 Convergence in the space

A.2.1 The space of continuous functions

A.2.2 The space

A.2.3 Sobolev space of order 1

A.2.4 Sobolev spaces of fractional index

A.3 The Schwarz inequality for integrals

Notes

Appendix B Proof of h‐convergence

Appendix C Convergence in 3D: Empirical results

Input data

Reference solution

Discussion

Appendix D Legendre polynomials

D.1 Shape functions based on Legendre polynomials

Appendix E Numerical quadrature

E.1 Gaussian quadrature

E.2 Gauss‐Lobatto quadrature

Note

Appendix F Polynomial mapping functions

F.1 Interpolation on surfaces

F.1.1 Interpolation on the standard quadrilateral element

F.1.2 Interpolation on the standard triangle

Appendix G Corner singularities in two‐dimensional elasticity

G.1 The Airy stress function

G.2 Stress‐free edges

G.2.1 Symmetric eigenfunctions

G.2.2 Antisymmetric eigenfunctions

G.2.3 The L‐shaped domain

Complex eigenvalues

G.2.4 Corner points

Notes

Appendix H Computation of stress intensity factors

H.1 Singularities at crack tips

H.2 The contour integral method

H.3 The energy release rate

H.3.1 Symmetric (Mode I) loading

H.3.2 Antisymmetric (Mode II) loading

H.3.3 Combined (Mode I and Mode II) loading

H.3.4 Computation by the stiffness derivative method

Note

Appendix I Fundamentals of data analysis

I.1 Statistical foundations

The product rule

Bayes' theorem

Marginalization

I.2 Test data

I.3 Statistical models

The bilinear model

The fatigue limit model

The random fatigue limit model

I.4 Ranking

The Bayes factor

I.5 Confidence intervals

Notes

Appendix J Estimation of fastener forces in structural connections

Appendix K Useful algorithms in solid mechanics

K.1 The traction vector

K.2 Transformation of vectors

K.3 Transformation of stresses

K.4 Principal stresses

K.5 The von Mises stress

K.6 Statically equivalent forces and moments

K.6.1 Technical formulas for stress

Normal traction

Shearing tractions

Notes

Bibliography

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

p

q

r

s

t

u

v

w

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Advisors: René de Borst Perumal Nithiarasu Tayfun E. Tezduyar Genki Yagawa Tarek Zohdi

Barna Szabó

.....

and the QoI can be written as

where we made use of eq. (1.55). The relationships between the polynomial degree ranging from 2 to 100 and the corresponding values of the QoI computed by the direct method are displayed in Fig. 1.7. It is seen that convergence to the exact value is very slow.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Finite Element Analysis
Подняться наверх