Data Management: a gentle introduction

Data Management: a gentle introduction
Автор книги: id книги: 1620663     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 6309,77 руб.     (60,79$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Учебная литература Правообладатель и/или издательство: Ingram Дата добавления в каталог КнигаЛит: ISBN: 9789401805551 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The overall objective of this book is to show that data management is an exciting and valuable capability that is worth time and effort. More specifically it aims to achieve the following goals: 1. To give a “gentle” introduction to the field of DM by explaining and illustrating its core concepts, based on a mix of theory, practical frameworks such as TOGAF, ArchiMate, and DMBOK, as well as results from real-world assignments.2. To offer guidance on how to build an effective DM capability in an organization.This is illustrated by various use cases, linked to the previously mentioned theoretical exploration as well as the stories of practitioners in the field.The primary target groups are: busy professionals who “are actively involved with managing data”. The book is also aimed at (Bachelor’s/ Master’s) students with an interest in data management. The book is industry-agnostic and should be applicable in different industries such as government, finance, telecommunications etc.Typical roles for which this book is intended: data governance office/ council, data owners, data stewards, people involved with data governance (data governance board), enterprise architects, data architects, process managers, business analysts and IT analysts.The book is divided into three main parts: theory, practice, and closing remarks. Furthermore, the chapters are as short and to the point as possible and also make a clear distinction between the main text and the examples. If the reader is already familiar with the topic of a chapter, he/she can easily skip it and move on to the next.

Оглавление

Bas van Gils. Data Management: a gentle introduction

Other publications by Van Haren Publishing

Colophon

■ 1.1 GOALS FOR THIS BOOK

■ 1.2 INTENDED AUDIENCE

■ 1.3 APPROACH

■ 2.1 DATA

■ 2.2 ASSET

■ 2.3 DATA AND PROCESS

■ 2.4 VISUAL SUMMARY

■ 3.1 A DEFINITION OF DATA MANAGEMENT

■ 3.2 VALUE OF DM

■ 3.3 KEY CHALLENGES FOR DM

■ 3.4 VISUAL SUMMARY

■ 4.1 THE CENTER OF THE UNIVERSE

■ 4.2 DM AND BUSINESS PROCESS MANAGEMENT

■ 4.3 DM AND IT MANAGEMENT

■ 4.4 INFORMATION/DATA ANALYSIS

■ 4.5 DATABASE MANAGEMENT

■ 4.6 DM AND ENTERPRISE ARCHITECTURE MANAGEMENT

■ 4.7 PHILOSOPHICAL CONSIDERATIONS

■ 4.8 VISUAL SUMMARY

■ 6.1 INTRODUCTION

■ 6.2 DATA CODIFIES WHAT WE KNOW ABOUT THE WORLD

■ 6.3 STORING DATA IN SYSTEMS

■ 6.4 DATA IN PROCESSES

■ 6.5 CONNECTING THE BUSINESS AND IT PERSPECTIVE

■ 6.6 OUTLOOK

■ 6.7 VISUAL SUMMARY

■ 7.1 INTRODUCTION

■ 7.2 MANAGING THE LIFECYCLE OF DATA

■ 7.3 DECONSTRUCTING DM

■ 7.4 VISUAL SUMMARY

■ 8.1 CLASSIFYING DATA

■ 8.2 FIVE FUNDAMENTALLY DIFFERENT TYPES OF DATA

■ 8.3 TRANSACTION DATA

■ 8.4 MASTER DATA

■ 8.5 BUSINESS INTELLIGENCE DATA

■ 8.6 REFERENCE DATA

■ 8.7 METADATA

■ 8.8 VISUAL SUMMARY

■ 9.1 INTRODUCTION

■ 9.2 DATA GOVERNANCE AND DATA MANAGEMENT

■ 9.3 DATA GOVERNANCE ACTIVITIES IN DMBOK

■ 9.4 A MODERN APPROACH TO DATA GOVERNANCE

■ 9.5 POSITION OF DATA GOVERNANCE

■ 9.6 VISUAL SUMMARY

■ 10.1 TYPES OF METADATA

10.1.1 Business metadata

10.1.2 Technical metadata

10.1.3 Operational metadata

■ 10.2 METADATA IS THE FOUNDATION

■ 10.3 METADATA REPOSITORIES

■ 10.4 VISUAL SUMMARY

■ 11.1 SCOPE

■ 11.2 ABSTRACTION LEVELS

■ 11.3 MODELING LANGUAGES

11.3.1 Fact-based modeling

11.3.2 Entity relationship modeling

11.3.3 Architecture modeling with ArchiMate

■ 11.4 RELATIONSHIP TO OTHER DM CAPABILITIES

■ 11.5 VISUAL SUMMARY

■ 12.1 ARCHITECTURE

■ 12.2 DATA ARCHITECTURE

■ 12.3 RELATIONSHIP TO OTHER (DATA MANAGEMENT) CAPABILITIES

■ 12.4 VISUAL SUMMARY

■ 13.1 INTRODUCTION TO DATA INTEGRATION

■ 13.2 COMMON INTEGRATION PATTERNS

13.2.1 Batch integration

13.2.2 Accessing data through services

13.2.3 Change data capture

13.2.4 Streaming data integration

13.2.5 Data virtualization

■ 13.3 INTEGRATION FROM AN ARCHITECTURE PERSPECTIVE

13.3.1 Dealing with the number of potential connections

13.3.2 Dealing with different names and structures

13.3.3 Dealing with different patterns

■ 13.4 VISUAL SUMMARY

■ 14.1 DEFINITION

■ 14.2 USING REFERENCE DATA TO HARMONIZE THE MEANING OF DATA

■ 14.3 HISTORIC VERSIONS OF REFERENCE DATA SETS

■ 14.4 REFERENCE DATA AND GOVERNANCE

■ 14.5 VISUAL SUMMARY

■ 15.1 MULTIPLE VERSIONS OF THE TRUTH

■ 15.2 BASIC MDM CONCEPTS

■ 15.3 RELATIONSHIP TO OTHER DATA MANAGEMENT CAPABILITIES

■ 15.4 VISUAL SUMMARY

■ 16.1 INTRODUCTION

■ 16.2 THE NOTION OF QUALITY

■ 16.3 DATA QUALITY

■ 16.4 DATA QUALITY MANAGEMENT

■ 16.5 CRITICAL DATA ELEMENTS

■ 16.6 RELATIONSHIP TO OTHER CAPABILITIES

■ 16.7 VISUAL SUMMARY

■ 17.1 RISKS AND RISK MITIGATING MEASURES

■ 17.2 ISO STANDARDS

■ 17.3 DATA SECURITY MANAGEMENT

■ 17.4 TRAINING AND CERTIFICATION

■ 17.5 RELATIONSHIP TO OTHER CAPABILITIES

■ 17.6 VISUAL SUMMARY

■ 18.1 DEFINING BUSINESS INTELLIGENCE AND ANALYTICS

■ 18.2 COMMON SYSTEM TYPES

■ 18.3 STRUCTURING DATA

■ 18.4 SELF-SERVICE BI

■ 18.5 RELATIONSHIP TO OTHER CAPABILITIES

■ 18.6 VISUAL SUMMARY

■ 19.1 DEFINITION OF BIG DATA

■ 19.2 DEALING WITH BIG DATA

■ 19.3 TECHNICAL CAPABILITIES AND ARCHITECTURE

■ 19.4 RELATIONSHIP TO OTHER CAPABILITIES

■ 19.5 VISUAL SUMMARY

■ 20.1 PEOPLE ARE KEY

■ 20.2 OBSERVATIONS ABOUT TECHNOLOGY

■ 20.3 TECHNOLOGY AND THE FUNCTIONAL AREAS OF DMBOK

20.3.1 Data governance and stewardship

20.3.2 Metadata

20.3.3 Modeling

20.3.4 Architecture

20.3.5 Integration

20.3.6 Reference and master data

20.3.7 Quality

20.3.8 Security

20.3.9 Business intelligence

20.3.10 Big data

■ 20.4 TECHNOLOGY ADOPTION

■ 20.5 VISUAL SUMMARY

■ 21.1 ETHICS IN DATA

■ 21.2 ETHICAL HANDLING OF DATA

21.2.1 Ethical principles behind data protection

21.2.2 The data lifecycle

21.2.3 Using ethical principles in the data lifecycle

■ 21.3 THE RELATIONSHIP BETWEEN ETHICS AND GOVERNANCE

■ 21.4 VISUAL SUMMARY

■ 23.1 THE NEED FOR A BUSINESS CASE

■ 23.2 QUALITATIVE AND QUANTITATIVE BUSINESS CASE

■ 23.3 INCREMENTAL APPROACH TO BUILDING A BUSINESS CASE

■ 24.1 TOP-DOWN APPROACH

■ 24.2 A MOTIVATION FOR STARTING SMALL

■ 24.3 SETTING UP YOUR FIRST EXPERIMENTS WITH DATA QUALITY MANAGEMENT

■ 24.4 SCALING UP AFTER SUCCESSFUL EXPERIMENTATION

■ 25.1 TOP-DOWN AND BOTTOM-UP

■ 25.2 OWNERSHIP/STEWARDSHIP MODELS

■ 25.3 FINDING OWNERS AND STEWARDS

■ 26.1 PEOPLE FIRST, AND THE NEED FOR TRAINING

■ 26.2 TYPES OF TRAINING

■ 26.3 HOW TO DESIGN A TRAINING PROGRAM

■ 27.1 DATA MANAGEMENT POLICY

■ 27.2 TYPICAL STRUCTURE FOR A DATA MANAGEMENT POLICY

■ 27.3 SETTING UP A DATA MANAGEMENT POLICY

27.3.1 Top-down

27.3.2 Bottom-up

■ 27.4 RECOMMENDATIONS

■ 28.1 FREEZING LANGUAGE

■ 28.2 DEFINITIONS AND CONCEPTUAL DATA MODELS

■ 28.3 DEFINITIONS IN A CONTEXT

■ 28.4 RECOMMENDATIONS

■ 29.1 THE IMPORTANCE OF METADATA

■ 29.2 METADATA REPOSITORY ARCHITECTURES

■ 29.3 IMPLEMENTATION STRATEGIES

29.3.1 Top-down metadata strategy

29.3.2 Bottom-up metadata strategy

29.3.3 Matching the strategy to the situation

■ 29.4 RECOMMENDATIONS

■ 30.1 EA AS A SOURCE OF INFORMATION

■ 30.2 EA MODELS AND VISUALIZATIONS

■ 30.3 BUILDING EFFECTIVE SOLUTIONS

■ 30.4 RECOMMENDATIONS

■ 31.1 DATA IS EVERYWHERE

■ 31.2 START SIMPLE

■ 31.3 KEEP IT SIMPLE

■ 31.4 RECOMMENDATIONS

■ 32.1 MOTIVATION FOR A SECURITY FRAMEWORK

■ 32.2 SECURITY USE CASES

■ 32.3 SECURITY LEVELS IN BUSINESS TERMS

■ 32.4 THE LINK TO SECURITY MEASURES AND CONTROLS

■ 32.5 TYING IT TOGETHER

■ 33.1 CHANGE AND RUN

■ 33.2 ROLES IN THE DMBOK

■ 33.3 SKILLS IN THE SFIA FRAMEWORK

■ 33.4 DEFINITION OF ROLES

33.4.1 Architect

33.4.2 Business management

33.4.3 Data owner, data steward

33.4.4 Project management

33.4.5 Chief data officer

33.4.6 Business analyst, process analyst, and system analyst

■ 33.5 REFLECTION AND RECOMMENDATION

■ 34.1 OBSERVATIONS ABOUT BIG DATA ADOPTION

■ 34.2 BUILDING A CULTURE OF INNOVATION

■ 34.3 LINKING TO DATA MANAGEMENT DEFENSE

■ 34.4 THE FUTURE OF BIG DATA

■ 35.1 TO ROADMAP OR NOT TO ROADMAP

■ 35.2 THE STEPS TOWARDS AN EFFECTIVE ROADMAP

■ 35.3 TECHNIQUES

35.3.1 Vision phase

35.3.2 Analysis phase

35.3.3 Portfolio phase

35.3.4 Execution phase

■ 35.4 RECOMMENDATIONS

■ 36.1 DATA MANAGEMENT

■ 36.2 ANTIFRAGILITY AND COMPLEXITY

■ 36.3 EXPECTED BENEFITS

■ 37.1 REVIEW

■ 37.2 OUTLOOK

■ 37.3 CALL TO ACTION

A

B

C

D

E

F

G

H

I

L

M

O

P

R

S

T

U

Отрывок из книги

Data Management: a gentle introduction

- IT and IT Management

.....

19 BIG DATA

19.1 Definition of big data

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Data Management: a gentle introduction
Подняться наверх