Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers
Автор книги: id книги: 2354418     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 9556,41 руб.     (93,16$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119750741 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers In Principles of Superconducting Quantum Computers , a pair of distinguished researchers delivers a comprehensive and insightful discussion of the building of quantum computing hardware and systems. Bridging the gaps between computer science, physics, and electrical and computer engineering, the book focuses on the engineering topics of devices, circuits, control, and error correction. Using data from actual quantum computers, the authors illustrate critical concepts from quantum computing. Questions and problems at the end of each chapter assist students with learning and retention, while the text offers descriptions of fundamentals concepts ranging from the physics of gates to quantum error correction techniques. The authors provide efficient implementations of classical computations, and the book comes complete with a solutions manual and demonstrations of many of the concepts discussed within. It also includes: A thorough introduction to qubits, gates, and circuits, including unitary transformations, single qubit gates, and controlled (two qubit) gates Comprehensive explorations of the physics of single qubit gates, including the requirements for a quantum computer, rotations, two-state systems, and Rabi oscillations Practical discussions of the physics of two qubit gates, including tunable qubits, SWAP gates, controlled-NOT gates, and fixed frequency qubits In-depth examinations of superconducting quantum computer systems, including the need for cryogenic temperatures, transmission lines, S parameters, and moreIdeal for senior-level undergraduate and graduate students in electrical and computer engineering programs, Principles of Superconducting Quantum Computers also deserves a place in the libraries of practicing engineers seeking a better understanding of quantum computer systems.

Оглавление

Daniel D. Stancil. Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers

Contents

List of Figures

List of Tables

Guide

Pages

List of Figures

List of Tables

Preface

Acknowledgments

About the Companion Website

1 Qubits, Gates, and Circuits. 1.1 Bits and Qubits

1.1.1 Circuits in Space vs. Circuits in Time

1.1.2 Superposition

1.1.3 No Cloning

1.1.4 Reversibility

1.1.5 Entanglement

1.2 Single-Qubit States

1.3 Measurement and the Born Rule

1.4 Unitary Operations and Single-Qubit Gates

1.5 Two-Qubit Gates

1.5.1 Two-Qubit States

1.5.2 Matrix Representation of Two-Qubit Gates

1.5.3 Controlled-NOT

1.6 Bell State

1.7 No Cloning, Revisited

1.8 Example: Deutsch’s Problem

1.9 Key Characteristics of Quantum Computing

1.10 Quantum Computing Systems

Exercises

Notes

2 Physics of Single Qubit Gates. 2.1 Requirements for a Quantum Computer

2.2 Single Qubit Gates. 2.2.1 Rotations

2.2.1.1 Classical Rotations

2.2.1.2 Rotation of the Quantum Mechanical State Vector

2.2.1.3 Bloch Sphere

2.2.1.4 The Most General Unitary

2.2.2 Two State Systems

2.2.2.1 Eigenvalues of the Two State Spin System

2.2.2.2 Larmor Precession

2.2.2.3 Coupled Qubit States

2.2.3 Creating Rotations: Rabi Oscillations. 2.2.3.1 Rotation Operator Approach

2.2.3.2 Rotations about z

2.2.3.3 Coupled-Mode Theory Approach

2.3 Quantum State Tomography

2.4 Expectation Values and the Pauli Operators

2.5 Density Matrix

Exercises

Notes

3 Physics of Two Qubit Gates

3.1 iSWAP Gate

3.2 Coupled Tunable Qubits

3.3 Cross Resonance Scheme

3.4 Other Controlled Gates

3.5 Two-Qubit States and the Density Matrix

Exercises

Notes

4 Superconducting Quantum Computer Systems

4.1 Transmission Lines. 4.1.1 General Transmission Line Equations

4.1.2 Lossless Transmission Lines

4.1.3 Transmission Lines with Loss. 4.1.3.1 Sinusoidal Steady State

4.1.3.2 Low Loss Transmission Lines

4.2 Terminated Lossless Line

4.2.1 Reflection Coefficient

Power (Flow of Energy) and Return Loss

4.2.3 Standing Wave Ratio (SWR)

4.2.4 Impedance as a Function of Position

4.2.5 Quarter Wave Transformer

4.2.6 Coaxial, Microstrip, and Coplanar Lines

4.2.6.1 Coaxial Lines

4.2.6.2 Microstrip Lines

4.2.6.3 Coplanar Waveguide

4.3 S Parameters

4.3.1 Lossless Condition

4.3.2 Reciprocity

4.4 Transmission (ABCD) Matrices

4.5 Attenuators

4.6 Circulators and Isolators

4.7 Power Dividers/Combiners

4.8 Mixers

4.9 Low-Pass Filters

4.10 Noise

4.10.1 Thermal Noise

4.10.2 Equivalent Noise Temperature

4.10.3 Noise Factor and Noise Figure

4.10.4 Attenuators and Noise

4.10.5 Noise in Cascaded Systems

4.11 Low Noise Amplifiers

Exercises

Notes

5 Resonators: Classical Treatment

5.1 Parallel Lumped Element Resonator

5.2 Capacitive Coupling to a Parallel Lumped-Element Resonator

5.3 Transmission Line Resonator

5.4 Capacitive Coupling to a Transmission Line Resonator

5.5 Capacitively-Coupled Lossless Resonators

5.6 Classical Model of Qubit Readout

Exercises

Notes

6 Resonators: Quantum Treatment

6.1 Lagrangian Mechanics. 6.1.1 Hamilton’s Principle

6.1.2 Calculus of Variations

6.1.3 Lagrangian Equation of Motion

6.2 Hamiltonian Mechanics

6.3 Harmonic Oscillators

6.3.1 Classical Harmonic Oscillator

6.3.2 Quantum Mechanical Harmonic Oscillator

6.3.3 Raising and Lowering Operators

6.3.4 Can a Harmonic Oscillator Be Used as a Qubit?

6.4 Circuit Quantum Electrodynamics

6.4.1 Classical LC Resonant Circuit

6.4.2 Quantization of the LC Circuit

6.4.3 Circuit Electrodynamic Approach for General Circuits

6.4.4 Circuit Model for Transmission Line Resonator

6.4.5 Quantizing a Transmission Line Resonator

6.4.6 Quantized Coupled LC Resonant Circuits

6.4.7 Schrödinger, Heisenberg, and Interaction Pictures

6.4.8 Resonant Circuits and Qubits

6.4.9 The Dispersive Regime

Exercises

Notes

7 Theory of Superconductivity

7.1 Bosons and Fermions

7.2 Bloch Theorem

7.3 Free Electron Model for Metals

7.3.1 Discrete States in Finite Samples

7.3.2 Phonons

7.3.3 Debye Model

7.3.4 Electron–Phonon Scattering and Electrical Conductivity

7.3.5 Perfect Conductor vs. Superconductor

7.4 Bardeen, Cooper, and Schrieffer Theory of Superconductivity

7.4.1 Cooper Pair Model

7.4.2 Dielectric Function

7.4.3 Jellium

7.4.4 Scattering Amplitude and Attractive Electron–Electron Interaction

7.4.5 Interpretation of Attractive Interaction

7.4.6 Superconductor Hamiltonian

7.4.7 Superconducting Ground State

7.5 Electrodynamics of Superconductors. 7.5.1 Cooper Pairs and the Macroscopic Wave Function

7.5.2 Potential Functions

7.5.3 London Equations

7.5.4 London Gauge

7.5.5 Penetration Depth

7.5.6 Flux Quantization

7.6 Chapter Summary

Exercises

Notes

8 Josephson Junctions

8.1 Tunneling

8.1.1 Reflection from a Barrier

8.1.2 Finite Thickness Barrier

8.2 Josephson Junctions

8.2.1 Current and Voltage Relations

8.2.2 Josephson Junction Hamiltonian

8.2.3 Quantized Josephson Junction Analysis

8.3 Superconducting Quantum Interference Devices (SQUIDs)

8.4 Josephson Junction Parametric Amplifiers

Exercises

Notes

9 Errors and Error Mitigation. 9.1 NISQ Processors

9.2 Decoherence

9.3 State Preparation and Measurement Errors

9.4 Characterizing Gate Errors

9.5 State Leakage and Suppression Using Pulse Shaping

9.6 Zero-Noise Extrapolation

9.7 Optimized Control Using Deep Learning

Exercises

Notes

10 Quantum Error Correction

10.1 Review of Classical Error Correction

10.1.1 Error Detection

10.1.2 Error Correction: Repetition Code

10.1.3 Hamming Code

10.2 Quantum Errors

10.3 Detecting and Correcting Quantum Errors. 10.3.1 Bit Flip

10.3.2 Phase Flip

10.3.3 Correcting Bit and Phase Flips: Shor’s 9-Qubit Code

10.3.4 Arbitrary Rotations

10.4 Stabilizer Codes

10.4.1 Stabilizers

10.4.2 Stabilizers for Error Correction

10.5 Operating on Logical Qubits

10.6 Error Thresholds

10.6.1 Concatenation of Error Codes

10.6.2 Threshold Theorem

10.7 Surface Codes

10.7.1 Stabilizers

10.7.2 Error Detection and Correction

10.7.3 Logical X and Z Operators

10.7.4 Multiple Qubits: Lattice Surgery

10.7.4.1 Lattice Merge

10.7.4.2 Lattice Split

10.7.5 CNOT

10.7.6 Single-Qubit Gates

10.8 Summary and Further Reading

Exercises

Notes

11 Quantum Logic: Efficient Implementation of Classical Computations

11.1 Reversible Logic

11.1.1 Reversible Logic Gates

11.1.2 Reversible Logic Circuits

11.2 Quantum Logic Circuits

11.2.1 Entanglement and Uncomputing

11.2.2 Multi-Qubit Gates

11.2.3 Qubit Topology

11.3 Efficient Arithmetic Circuits: Adder

11.3.1 Quantum Ripple-Carry Adder

11.3.2 In-Place Ripple-Carry Adder

11.3.3 Carry-Lookahead Adder

11.3.4 Adder Comparison

11.4 Phase Logic

11.4.1 Controlled-Z and Controlled-Phase Gates

11.4.2 Selective Phase Change

11.4.3 Phase Logic Gates

11.5 Summary and Further Reading

Exercises

Notes

12 Some Quantum Algorithms

12.1 Computational Complexity

12.1.1 Quantum Program Run-Time

12.1.2 Classical Complexity Classes

12.1.3 Quantum Complexity

12.2 Grover’s Search Algorithm

12.2.1 Grover Iteration

12.2.2 Quantum Implementation

12.2.3 Generalizations

12.3 Quantum Fourier Transform

12.3.1 Discrete Fourier Transform

12.3.2 Inverse Discrete Fourier Transform

12.3.3 Quantum Implementation of the DFT

12.3.4 Encoding Quantum States

12.3.5 Quantum Implementation

12.3.6 Computational Complexity

12.4 Quantum Phase Estimation

12.4.1 Quantum Implementation

12.4.2 Computational Complexity and Other Issues

12.5 Shor’s Algorithm

12.5.1 Hybrid Classical-Quantum Algorithm

12.5.2 Finding the Period

12.5.3 Computational Complexity

12.6 Variational Quantum Algorithms

12.6.1 Variational Quantum Eigensolver

12.6.1.1 Eigenvalues and Expectations

12.6.1.2 Ansatz

12.6.1.3 Measuring the Hamiltonian

12.6.1.4 Summary

12.6.2 Quantum Approximate Optimization Algorithm

12.6.2.1 Encoding the Objective Function

12.6.2.2 Ising and QUBO Formulations

12.6.2.3 QAOA Ansatz

12.6.2.4 Comparison with VQE

12.6.3 Challenges and Opportunities

12.7 Summary and Further Reading

Exercises

Notes

Bibliography

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Daniel D. Stancil

North Carolina State University

.....

Completing the calculation gives the expected result:

(1.43)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Principles of Superconducting Quantum Computers
Подняться наверх