Elastic Waves in Solids 1

Elastic Waves in Solids 1
Автор книги: id книги: 2285290     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (147,57$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119902935 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 1 presents the different modes of propagation of elastic waves in increasingly complex media and structures. It first studies the propagation in an unlimited solid where only the material properties are taken into account. It then analyzes reflection and transmission phenomena at an interface with a fluid or a second solid.<br /><br />It explains the search for propagation modes on a free surface or at the interface between two media. Finally, it proposes a study of the dispersive propagation of elastic waves guided by a plate or a cylinder. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.

Оглавление

Daniel Royer. Elastic Waves in Solids 1

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Elastic Waves in Solids 1. Propagation

Preface

List of Main Symbols

1. Propagation in an Unbounded Solid

1.1. Reviewing the mechanics of continuous media

1.1.1. Conservation equations

1.1.1.1. Integral equations

1.1.1.2. Local equations

1.1.2. Kinematics of continuous media

1.1.3. Poynting’s theorem: energy balance

1.1.4. Stress–strain relationship: Maxwell relations

1.2. Isotropic solid

1.2.1. Constitutive equations

1.2.2. Equations of propagation, wave decoupling

1.2.2.1. Helmholtz decomposition

1.2.2.2. Velocity of bulk waves

1.2.3. Traveling, plane, sinusoidal waves

1.2.3.1. Traveling wave

1.2.3.2. Plane wave

1.2.3.3. Complex representation

1.2.4. Polarization

1.2.5. Acoustic intensity

1.2.6. Cylindrical and spherical waves

1.2.6.1. Cylindrical waves

1.2.6.2. Spherical waves

1.2.6.2.1. Longitudinal wave

1.2.6.2.2. Transverse wave

1.3. Anisotropic solid

1.3.1. Symmetry and elasticity tensor

1.3.2. Propagation equation, phase velocity, polarization

1.3.3. Propagation in an orthotropic material

1.3.4. Group velocity and energy velocity

1.3.5. Slowness surface and wave surface

1.3.5.1. Anisotropy factor

1.3.5.2. 3D slowness surfaces

1.4. Piezoelectric solid

1.4.1. Constitutive equations

1.4.2. Reduction in the number of independent piezoelectric constants

1.4.3. Plane waves in a piezoelectric crystal

1.4.3.1. Propagation in a material of cubic symmetry

1.4.3.2. Electromechanical coupling coefficient

1.4.3.3. Propagation in a crystal of trigonal system

1.5. Viscoelastic media

1.5.1. Constitutive equation of linear viscoelasticity

1.5.2. Simple rheological models

1.5.3. Velocity and attenuation in a viscoelastic medium

1.5.4. Time–temperature superposition principle

1.5.5. Newtonian fluid

2. Reflection and Transmission at an Interface

2.1. Boundary conditions

2.2. Direction and polarization of reflected and transmitted waves

2.2.1. Graphical construction

2.2.2. Wave decoupling

2.2.2.1. General case

2.2.2.2. Isotropic case

2.2.3. Critical angle, evanescent wave and total reflection

2.2.4. Conservation of energy

2.3. Isotropic solid: transverse horizontal wave

2.3.1. Reflection and transmission between two solids

2.3.2. Plate between two solids, impedance matching

2.4. Isotropic media: longitudinal and transverse vertical waves

2.4.1. Reflection on a free surface

2.4.1.1. Incident longitudinal wave

2.4.1.2. Incident transverse vertical wave

2.4.2. Solid–fluid interface

2.4.2.1. Incident longitudinal wave in the solid

2.4.2.2. Incident transverse vertical wave in the solid

2.4.2.3. Incident longitudinal wave in the fluid

2.4.2.4. Interaction of a plane wave with an immersed plate

2.4.2.4.1. Velocity measurements by time-of-flight

2.4.2.4.2. Phase velocity and attenuation measurements

2.5. Anisotropic medium: diffraction matrix

2.5.1. Analytical resolution

2.5.2. Expression for the stresses

2.5.3. Sorting the solutions

2.5.4. Considerations of symmetry

2.5.5. Reflection and transmission coefficients, interface waves

2.5.5.1. Diffraction matrix

2.5.5.2. Reflection on a free surface

2.5.5.3. Interface and surface waves

2.5.6. Interface between an orthotropic solid and an isotropic solid

3. Surface Waves and Interface Waves

3.1. Surface waves

3.1.1. Isotropic solid: Rayleigh wave

3.1.1.1. Method of potentials

3.1.1.2. Mechanical displacement and stresses

3.1.1.3. Displacement amplitude and power

3.1.2. Anisotropic solid

3.1.2.1. Method of partial waves

3.1.2.2. Solid with an orthotropic symmetry

3.1.2.3. Influence of the anisotropy factor

3.1.2.4. Pseudo-surface acoustic wave

3.1.3. Piezoelectric crystal

3.1.3.1. Search procedure, wave decoupling

3.1.3.2. Electrical boundary conditions, surface permittivity

3.1.3.3. Electromechanical coupling coefficient

3.1.3.4. Amplitude of electric potential and power

3.1.3.5. Characteristics of the main materials

3.2. Interface waves

3.2.1. Isotropic solid-perfect fluid interface

3.2.1.1. Characteristic equation

3.2.1.2. Scholte wave

3.2.1.3. Leaky Rayleigh wave

3.2.2. Interface between two isotropic solids

3.2.2.1. Perfect interface: Stoneley wave

3.2.2.2. Degraded interface

3.3. Bleustein–Gulyaev wave

4. Guided Elastic Waves

4.1. Waveguide, group velocity

4.1.1. Elementary planar waveguide

4.1.2. Velocity of a wave packet

4.1.3. Propagation of a Gaussian pulse

4.2. Transverse horizontal waves

4.2.1. Guided TH modes

4.2.2. Love wave

4.2.3. Love wave in an inhomogeneous medium

4.3. Lamb waves

4.3.1. Free isotropic plate

4.3.1.1. Rayleigh–Lamb equations

4.3.1.2. Dispersion curves

4.3.1.3. Behavior at low and high frequencies

4.3.1.3.1. Modes without a cut-off frequency

4.3.1.3.2. Modes with a cut-off frequency

4.3.1.3.3. High-frequency behavior

4.3.1.4. Zero group velocity modes

4.3.1.4.1. Origin of ZGV modes

4.3.1.4.2. Selection rules

4.3.1.4.3. Range of existence

4.3.1.5. Influence of Poisson’s ratio

4.3.1.6. Lamé modes

4.3.1.7. Plate with finite dimensions

4.3.1.7.1. Edge resonance

4.3.1.7.2. Waves guided by a ribbon

4.3.2. Isotropic plate immersed in a fluid

4.3.3. Free anisotropic plate

4.3.3.1. Partial wave method

4.3.3.2. Solid with a monoclinic symmetry

4.3.3.3. Solid with an orthorhombic symmetry

4.3.3.4. Composite material

4.3.3.5. Group velocity and slowness curves

4.4. Cylindrical guides

4.4.1. Compressional modes

4.4.2. Flexural modes

4.4.3. Torsional modes

4.4.4. Tubular waveguide

Appendix 1. Differential Operators in Cylindrical and Spherical Coordinates

A1.1. Cylindrical coordinates

A1.2. Spherical coordinates

Appendix 2. Symmetry and Tensors

A2.1. Crystalline structure

A2.1.1. Lattice and atomic structure

A2.1.2. Rows, lattice planes and cells

A2.1.2.1. Rows

A2.1.2.2. Lattice planes and Miller indices

A2.1.2.3. Cells

A2.2. Point symmetry of crystals

A2.2.1. Point symmetry operations

A2.2.1.1. Stereographic projection

A2.2.1.2. Equivalence relations

A2.2.2. Point symmetry of lattices: the seven crystal systems

A2.2.3. The 32-point symmetry classes of crystals

A2.3. Representation of physical properties of crystals by tensors

A2.3.1. Change of orthonormal reference axes

A2.3.2. Definition of a tensor

A2.4. Reduction of the number of independent components imposed by the symmetry elements

A2.4.1. Matrices of point symmetry operations

A2.4.2. Effect of a center of symmetry

A2.5. Reduction of the number of independent elastic constants

A2.5.1. Crystals with at least one binary axis

A2.5.2. Crystals with a principal axis An (n > 2)

Appendix 3. Transport of Energy

A3.1. Energy balance

A3.2. Harmonic case

A3.3. Susceptance and free modes

References. Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendixes

General bibliography

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Editors Pierre-Noël Favennec† and Frédérique de Fornel

.....

u : mechanical displacement vector.

U : internal energy per unit volume.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Elastic Waves in Solids 1
Подняться наверх