Seismic Reservoir Modeling

Seismic Reservoir Modeling
Автор книги: id книги: 2052609     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 8706,04 руб.     (94,5$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: География Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119086192 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO₂ sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density.  Seismic Reservoir Modeling:  Theory, Examples and Algorithms  presents the main concepts and methods of seismic reservoir characterization. The book presents an overview of rock physics models that link the petrophysical properties to the elastic properties in porous rocks and a review of the most common geostatistical methods to interpolate and simulate multiple realizations of subsurface properties conditioned on a limited number of direct and indirect measurements based on spatial correlation models. The core of the book focuses on Bayesian inverse methods for the prediction of elastic petrophysical properties from seismic data using analytical and numerical statistical methods. The authors present basic and advanced methodologies of the current state of the art in seismic reservoir characterization and illustrate them through expository examples as well as real data applications to hydrocarbon reservoirs and CO₂ sequestration studies.

Оглавление

Dario Grana. Seismic Reservoir Modeling

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Seismic Reservoir Modeling. Theory, Examples, and Algorithms

Preface

Acknowledgments

1 Review of Probability and Statistics

1.1 Introduction to Probability and Statistics

1.2 Probability

Example 1.1

1.3 Statistics

1.3.1 Univariate Distributions

Example 1.2

1.3.2 Multivariate Distributions

1.4 Probability Distributions

1.4.1 Bernoulli Distribution

1.4.2 Uniform Distribution

1.4.3 Gaussian Distribution

1.4.4 Log‐Gaussian Distribution

1.4.5 Gaussian Mixture Distribution

1.4.6 Beta Distribution

1.5 Functions of Random Variable

1.6 Inverse Theory

1.7 Bayesian Inversion

Example 1.3

2 Rock Physics Models

2.1 Rock Physics Relations

2.1.1 Porosity – Velocity Relations

Example 2.1

2.1.2 Porosity – Clay Volume – Velocity Relations

2.1.3 P‐Wave and S‐Wave Velocity Relations

2.1.4 Velocity and Density

Example 2.2

2.2 Effective Media

2.2.1 Solid Phase

Example 2.3

Example 2.4

2.2.2 Fluid Phase

Example 2.5

2.3 Critical Porosity Concept

Example 2.6

2.4 Granular Media Models

Example 2.7

2.5 Inclusion Models

Example 2.8

2.6 Gassmann's Equations and Fluid Substitution

Example 2.9

2.7 Other Rock Physics Relations

2.8 Application

3 Geostatistics for Continuous Properties

3.1 Introduction to Spatial Correlation

3.2 Spatial Correlation Functions

Example 3.1

3.3 Spatial Interpolation

3.4 Kriging

3.4.1 Simple Kriging

Example 3.2

Example 3.3

3.4.2 Data Configuration

3.4.3 Ordinary Kriging and Universal Kriging

3.4.4 Cokriging

Example 3.4

3.5 Sequential Simulations

3.5.1 Sequential Gaussian Simulation

Example 3.5

3.5.2 Sequential Gaussian Co‐Simulation

Example 3.6

3.6 Other Simulation Methods

3.7 Application

4 Geostatistics for Discrete Properties

4.1 Indicator Kriging

Example 4.1

Example 4.2

4.2 Sequential Indicator Simulation

Example 4.3

Example 4.4

4.3 Truncated Gaussian Simulation

Example 4.5

4.4 Markov Chain Models

Example 4.6

4.5 Multiple‐Point Statistics

Example 4.7

4.6 Application

5 Seismic and Petrophysical Inversion

5.1 Seismic Modeling

Example 5.1

5.2 Bayesian Inversion

5.3 Bayesian Linearized AVO Inversion

5.3.1 Forward Model

5.3.2 Inverse Problem

Example 5.2

5.4 Bayesian Rock Physics Inversion

5.4.1 Linear – Gaussian Case

5.4.2 Linear – Gaussian Mixture Case

Example 5.3

5.4.3 Non‐linear – Gaussian Mixture Case

5.4.4 Non‐linear – Non‐parametric Case

Example 5.4

5.5 Uncertainty Propagation

Example 5.5

5.6 Geostatistical Inversion

5.6.1 Markov Chain Monte Carlo Methods

5.6.2 Ensemble Smoother Method

Example 5.6

5.6.3 Gradual Deformation Method

5.7 Other Stochastic Methods

6 Seismic Facies Inversion

6.1 Bayesian Classification

Example 6.1

Example 6.2

Example 6.3

Example 6.4

6.2 Bayesian Markov Chain Gaussian Mixture Inversion

Example 6.5

6.3 Multimodal Markov Chain Monte Carlo Inversion

Example 6.6

6.4 Probability Perturbation Method

6.5 Other Stochastic Methods

7 Integrated Methods

7.1 Sources of Uncertainty

7.2 Time‐Lapse Seismic Inversion

7.3 Electromagnetic Inversion

7.4 History Matching

7.5 Value of Information

8 Case Studies

8.1 Hydrocarbon Reservoir Studies

8.1.1 Bayesian Linearized Inversion

8.1.2 Ensemble Smoother Inversion

8.1.3 Multimodal Markov Chain Monte Carlo Inversion

8.2 CO2 Sequestration Study

Appendix: MATLAB Codes

A.1 Rock Physics Modeling

A.2 Geostatistical Modeling

A.3 Inverse Modeling

A.3.1 Seismic Inversion

A.3.2 Petrophysical Inversion

A.3.3 Ensemble Smoother Inversion

A.4 Facies Modeling

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Dario Grana

.....

Figure 1.6 Examples of different correlations of the joint distribution of two random variables X and Y. The correlation coefficient ρX,Y is 0.9 and −0.6 in the top plots and approximately 0 in the bottom plots.

Different probability mass and density functions can be used for discrete and continuous random variables, respectively. For parametric distributions, the function is completely defined by a limited number of parameters (e.g. mean and variance). In this section, we review the most common probability mass and density functions. Probability mass functions are commonly used in geoscience problems for discrete random variables such as facies or rock types, whereas PDFs are used for continuous properties such as porosity, fluid saturations, density, P‐wave and S‐wave velocity. Some applications in earth sciences include mixed discrete–continuous problems with both discrete and continuous random variables.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Seismic Reservoir Modeling
Подняться наверх