Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Douglas Cenzer. Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory
Set Theory and Foundations of Mathematics
Set Theory and Foundations of Mathematics
Preface
About the Authors
Contents
Chapter 1. Introduction
Chapter 2. Review of Sets and Logic
2.1. The Algebra of Sets
2.2. Relations
2.3. Functions
2.4. Equivalence Relations
2.5. Orderings
2.6. Trees
Chapter 3. Zermelo–Fraenkel Set Theory. 3.1. Historical Context
3.2. The Language of the Theory
3.3. The Basic Axioms
3.4. Axiom of Infinity
3.5. Axiom Schema of Comprehension
3.6. Axiom of Choice
3.7. Axiom Schema of Replacement
3.8. Axiom of Regularity
Chapter 4. Natural Numbers and Countable Sets. 4.1. Von Neumann’s Natural Numbers
4.2. Finite and Infinite Sets
4.3. Inductive and Recursive Definability
4.4. Cardinality
4.5. Countable and Uncountable Sets
Chapter 5. Ordinal Numbers and the Transfinite
5.1. Ordinals
5.2. Transfinite Induction and Recursion
5.3. Ordinal Arithmetic
5.4. Ordinals and Well-Orderings
Chapter 6. Cardinality and the Axiom of Choice
6.1. Equivalent Versions of the Axiom of Choice
6.2. Applications of the Axiom of Choice
6.3. Cardinal Numbers
Chapter 7. Real Numbers
7.1. Integers and Rational Numbers
7.2. Dense Linear Orders
7.3. Complete Orders
7.4. Countable and Uncountable Sets of Reals
7.5. Topological Spaces
Chapter 8. Models of Set Theory
8.1. The Hereditarily Finite Sets
8.2. Transfinite Models
Chapter 9. Ramsey Theory
9.1. Finite Patterns
9.2. Countably Infinite Patterns
9.3. Uncountable Patterns
Bibliography
Index
Отрывок из книги
An Introduction to Mathematical Logic
Volume I
.....
Proposition 2.3.4. For any function F : C → D and any subsets A, B of D,
.....