Antenna-in-Package Technology and Applications

Antenna-in-Package Technology and Applications
Автор книги: id книги: 1887599     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13648,6 руб.     (149,47$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119556657 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging Antenna-in-Package Technology and Applications  contains an introduction to the history of AiP technology. It explores antennas and packages, thermal analysis and design, as well as measurement setups and methods for AiP technology. The authors—well-known experts on the topic—explain why microstrip patch antennas are the most popular and describe the myriad constraints of packaging, such as electrical performance, thermo-mechanical reliability, compactness, manufacturability, and cost. The book includes information on how the choice of interconnects is governed by JEDEC for automatic assembly and describes low-temperature co-fired ceramic, high-density interconnects, fan-out wafer level packaging–based AiP, and 3D-printing-based AiP. The book includes a detailed discussion of the surface laminar circuit–based AiP designs for large-scale mm-wave phased arrays for 94-GHz imagers and 28-GHz 5G New Radios. Additionally, the book includes information on 3D AiP for sensor nodes, near-field wireless power transfer, and IoT applications. This important book: • Includes a brief history of antenna-in-package technology • Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN) • Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance Written for students in electrical engineering, professors, researchers, and RF engineers,  Antenna-in-Package Technology and Applications  offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.

Оглавление

Duixian Liu. Antenna-in-Package Technology and Applications

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Antenna-in-Package Technology and Applications

List of Contributors

Preface

Abbreviations

Symbols

1 Introduction

1.1 Background

1.2 The Idea

1.3 Exploring the Idea

1.3.1 Bluetooth Radio and Other RF Applications

1.3.2 60‐GHz Radio and Other Millimeter‐wave Applications

1.4 Developing the Idea into a Mainstream Technology

1.5 Concluding Remarks

Acknowledgements

References

2 Antennas

2.1 Introduction

2.2 Basic Antennas. 2.2.1 Dipole

2.2.2 Monopole

2.2.3 Loop

2.2.4 Slot

2.3 Unusual Antennas. 2.3.1 Laminated Resonator Antenna

2.3.2 Dish‐like Reflector Antenna

2.3.3 Slab Waveguide Antenna

2.3.4 Differentially Fed Aperture Antenna

2.3.5 Step‐profiled Corrugated Horn Antenna

2.4 Microstrip Patch Antennas

2.4.1 Basic Patch Antennas

2.4.2 Stacked Patch Antennas

2.4.3 Patch Antenna Arrays

2.5 Microstrip Grid Array Antennas

2.5.1 Basic Configuration

2.5.2 Principle of Operation

2.5.3 Design Formulas with an Example

2.6 Yagi‐Uda Antennas

2.6.1 Horizontal Yagi‐Uda Antenna

2.6.2 Vertical Yagi‐Uda Antenna

2.6.3 Yagi‐Uda Antenna Array

2.7 Magneto‐Electric Dipole Antennas

2.7.1 Single‐polarized Microstrip Magneto‐electric Dipole Antenna

2.7.2 Dual‐polarized Microstrip Magneto‐electric Dipole Antenna

2.7.3 Simulated and Measured Results

2.8 Performance Improvement Techniques

2.8.1 Single‐layer Spiral AMC

2.8.2 Design Guidelines

2.8.3 A Design Example

2.9 Summary

Acknowledgements

References

3 Packaging Technologies

3.1 Introduction

3.2 Major Packaging Milestones

3.3 Packaging Taxonomy

3.3.1 Routing Layer in Packages

3.3.1.1 Lead Frame

3.3.1.2 Laminate

3.3.1.3 Redistribution Layer

3.3.2 Die to Routing Layer Interconnect

3.3.2.1 Wire Bonds

3.3.2.2 Flip Chips

3.4 Packaging Process for Several Major Packages

3.4.1 Wire Bond Plastic Ball Grid Array

3.4.1.1 Die Preparation

3.4.1.2 Die Attach

3.4.1.3 Wire Bonding

3.4.1.4 Molding

3.4.1.5 Ball Mounting

3.4.1.6 Package Singulation

3.4.2 Wire Bond Quad Flat No‐Lead Packages

3.4.3 Flip‐chip Plastic Ball Grid Arrays

3.4.3.1 Flip‐chip Bumping

3.4.3.1.1 Solder Bumping

3.4.3.1.2 Cu Pillar Bumping

3.4.3.2 Flip‐chip Attach

3.4.3.3 Underfill

3.4.4 Wafer Level Packaging

3.4.5 Fan Out Wafer Level Packaging

3.5 Summary and Emerging Trends

References

4 Electrical, Mechanical, and Thermal Co‐Design

4.1 Introduction

4.2 Electrical, Warpage, and Thermomechanical Analysis for AiP Co‐design. 4.2.1 28‐GHz Phased Array Antenna Module Overview

4.2.2 Thermomechanical Test Vehicle Overview

4.2.3 Antenna Prototyping and Interconnect Characterization

4.2.4 Warpage Analysis and Test

4.2.5 Thermal Simulation and Characterization

4.3 Thermal Management Considerations for Next‐generation Heterogeneous Integrated Systems. 4.3.1 AiP Cooling Options Under Different Power Dissipation Conditions

4.3.2 Thermal Management for Heterogeneous Integrated High‐power Systems

Acknowledgment

References

5 Antenna‐in‐Package Measurements

5.1 General Introduction and Antenna Parameters. 5.1.1 Antenna Measurement Concepts

5.1.2 Field Regions

5.1.3 Radiation Characteristics

5.1.4 Polarization Properties of Antennas

5.2 Impedance Measurements. 5.2.1 Circuit Representation of Antennas

5.3 Anechoic Measurement Facility for Characterizing AiPs

5.3.1 Design of the mmWave Anechoic Chamber

5.3.2 Defining Antenna Measurement Uncertainty

5.3.3 Uncertainty in the mmWave Antenna Test Facility

5.3.4 Case Study AiP: Characterization of a mmWave Circularly Polarized Rod Antenna

5.4 Over‐the‐air System‐level Testing

5.5 Summary and Conclusions

References

Note

6 Antenna‐in‐package Designs in Multilayered Low‐temperature Co‐fired Ceramic Platforms

6.1 Introduction

6.2 LTCC Technology

6.2.1 Introduction

6.2.2 LTCC Fabrication Process

6.2.3 LTCC Material Suppliers and Manufacturing Foundries

6.3 LTCC‐based AiP

6.3.1 SIW AiP

6.3.2 mmWave AiP

6.3.2.1 5G AiP

6.3.2.2 WPAN (60‐GHz) AiP

6.3.2.3 Automotive Radar (79‐GHz) AiP

6.3.2.4 Imaging and Radar (94‐GHz) AiP

6.3.2.5 Sub‐THz (Above‐100‐GHz) AiP

6.3.3 Active Antenna in LTCC

6.3.4 Gain Enhancement Techniques in LTCC

6.3.5 Ferrite LTCC‐based Antenna

6.4 Challenges and Upcoming Trends in LTCC AiP

References

7 Antenna Integration in Packaging Technology operating from 60 GHz up to 300 GHz (HDI‐based AiP)

7.1 Organic Packaging Technology for AiP

7.1.1 Organic Package Overview

7.1.2 Buildup Architecture

7.1.3 Industrial Material

7.1.4 HDI Design Rules

7.1.5 Assembly Constraints and Body Size

7.2 Integration of AiP in Organic Packaging Technology Below 100 GHz. 7.2.1 Integration Strategy of the Antenna

7.2.2 60‐GHz AiP Modules

7.2.3 94‐GHz AiP Module

7.3 Integration of AiP in Organic Packaging Technology in the 120–140‐GHz Band

7.3.1 120–140‐GHz AiP Module

7.3.2 Link Demonstration Using a BiCMOS Chip with the 120‐GHz BGA Module

7.4 Integration of AiP in Organic Packaging Technology Beyond 200 GHz

7.5 Conclusion and Perspectives

References

8 Antenna Integration in eWLB Package

8.1 Introduction

8.2 The Embedded Wafer Level BGA Package

8.2.1 Process Flow for the eWLB

8.2.2 Vertical Interconnections in the eWLB

8.2.3 Embedded Z‐Line Technology

8.3 Toolbox Elements for AiP in eWLB

8.3.1 Transmission Lines

8.3.2 Passive Components and Distributed RF Circuits

8.3.3 RF Transition to PCB

8.3.4 Vertical RF Transitions

8.4 Antenna Integration in eWLB

8.4.1 Single Antenna

8.4.2 Antenna Array

8.4.3 3D Antenna and Antenna Arrays

8.5 Application Examples

8.5.1 Two‐channel 60‐GHz Transceiver Module

8.5.2 Four‐channel 77‐GHz Transceiver Module

8.5.3 Six‐channel 60‐GHz Transceiver Module

8.6 Conclusion

Acknowledgement

References

NOTE

9 Additive Manufacturing AiP Designs and Applications

9.1 Introduction

9.2 Additive Manufacturing Technologies. 9.2.1 Inkjet Printing

9.2.2 FDM 3D Printing

9.2.3 SLA 3D Printing

9.3 Material Characterization

9.3.1 Resonator‐based Material Characterization

9.3.2 Transmissive‐based Material Characterization

9.4 Recent Advances in AM for Packaging

9.4.1 Interconnects

9.4.2 AiP

9.5 Fabrication Process. 9.5.1 3D Printing Process

9.5.2 Inkjet Printing Process

9.5.3 AiP Fabrication Process

9.6 AiP and SoP using AM Technologies. 9.6.1 AiP Design

9.6.2 SoP Design

9.7 Summary and Prospect

References

10 SLC‐based AiP for Phased Array Applications

10.1 Introduction

10.2 SLC Technology

10.3 AiP for 5G Base Station Applications

10.3.1 Package and Antenna Structure

10.3.2 AiP Design Considerations. 10.3.2.1 Surface Wave Effects

10.3.2.2 Vertical Transitions

10.3.3 Aperture‐coupled Patch Antenna Design

10.3.4 28‐GHz Aperture‐coupled Cavity‐backed Patch Array Design

10.3.5 Passive Antenna Element Characterization

10.3.6 Active Module Characterization of 64‐element Beams

10.3.7 28‐GHz AiP Phased‐array Conclusion

10.4 94‐GHz Scalable AiP Phased‐array Applications

10.4.1 Scalable Phased‐array Concept

10.4.2 94‐GHz Antenna Prototype Designs

10.4.3 94‐GHz Antenna Prototype Evaluation

10.4.4 94‐GHz AiP Array Design

10.4.5 Package Modeling and Simulation

10.4.6 Package Assembly and Test

10.4.7 Antenna Pattern and Radiated Power Measurement

Acknowledgment

References

11 3D AiP for Power Transfer, Sensor Nodes, and IoT Applications

11.1 Introduction

11.2 Small Antenna Design and Miniaturization Techniques

11.2.1 Physical Bounds on the Radiation Q‐factor for Antenna Structures

11.2.1.1 Lower Bounds on Antenna Enclosed in a Sphere: Chu, McLean, and Thal Limits

11.2.1.2 Lower Bounds on Antenna Enclosed in an Arbitrary Structure: Gustafsson–Yaghjian Limit

11.2.2 Figure of Merit for Antenna Miniaturization. 11.2.2.1 Relation between Q‐factor and Antenna Input Impedance

11.2.2.2 Antenna Efficiency Effect on the Radiation Q

11.2.2.3 Cross‐polarization Effect on Antenna Radiation Q

11.2.2.4 Figure of Merit Definition

11.2.3 Antenna Miniaturization Techniques

11.2.3.1 Miniaturization through Geometrical Shaping of the Antenna

11.2.3.1.1 Slot Loading

11.2.3.1.2 Pin or Plate Loading

11.2.3.1.3 Inductive Loading

11.2.3.1.4 Capacitive Loading

11.2.3.2 Miniaturization through Material Loading

11.2.3.2.1 Loading through Dielectric or Ferromagnetic Materials

11.2.3.2.2 Loading through Metamaterials

11.2.3.2.3 Loading through Lumped‐Element RLC Circuits

11.2.3.2.4 Miniaturization by Slow‐wave Meanderline Loading

11.3 Multi‐mode Capability: A Way to Achieve Wideband Antennas

11.4 Miniaturized Antenna Solutions for Power Transfer and Energy Harvesting Applications

11.4.1 Integrated Antenna Design Challenges for WPT and Scavenging Systems. 11.4.1.1 Conjugate Impedance Matching

11.4.1.2 Antenna Structure Selection

11.4.2 Small Antenna Structure that can be Optimized for Arbitrary Input Impedance. 11.4.2.1 Basic Antenna Structure

11.4.2.2 Antenna Size Reduction by Folding

11.4.2.3 Final Antenna Structure and Parameter Analysis

11.4.3 Example of an AiP Solution for On‐chip Scavenging/UWB Applications

11.5 AiP Solutions in Low‐cost PCB Technology

11.5.1 Introduction to Wireless Sensor Networks and IoT

11.5.1.1 Examples of Antennas for IoT Devices

11.5.2 3D System‐in‐Package Solutions for Microwave Wireless Devices

11.5.3 E‐CUBE: A 3D SiP Solution

11.5.3.1 Multilayer Flex‐rigid PCB for Antenna Element Design

11.5.3.2 Modular Design of the Antenna Array and Power Distribution Network

11.5.3.3 Construction and Measurement Results

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

IEEE Press

.....

Technology R&D

Silicon Technology Development

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Antenna-in-Package Technology and Applications
Подняться наверх