Multi-parametric Optimization and Control

Multi-parametric Optimization and Control
Автор книги: id книги: 1889100     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13035,6 руб.     (124,08$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119265191 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

R ecent developments in multi-parametric optimization and control   Multi-Parametric Optimization and Control  provides comprehensive coverage of recent methodological developments for optimal model-based control through parametric optimization. It also shares real-world research applications to support deeper understanding of the material.  Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control.  The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems.  Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.

Оглавление

Efstratios N. Pistikopoulos. Multi-parametric Optimization and Control

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Wiley Series in

Multi‐parametric Optimization and Control

Short Bios of the Authors. Efstratios N. Pistikopoulos

Nikolaos A. Diangelakis

Richard Oberdieck

Preface

1 Introduction

1.1 Concepts of Optimization. 1.1.1 Convex Analysis

Definition 1.1 (Line)

Definition 1.2 (Line Segment)

Definition 1.3 (Convex Set)

1.1.1.1 Properties of Convex Sets

Definition 1.4 (Convex Function)

Definition 1.5 (Concave Function)

1.1.1.2 Properties of Convex Functions

1.1.2 Optimality Conditions

Definition 1.6 (Local Minimum)

Definition 1.7 (Global Minimum)

Definition 1.8 (Active Constraints)

Remark 1.1

1.1.2.1 Karush–Kuhn–Tucker Necessary Optimality Conditions

1.1.2.2 Karun–Kush–Tucker First‐Order Sufficient Optimality Conditions

1.1.3 Interpretation of Lagrange Multipliers

1.2 Concepts of Multi‐parametric Programming. 1.2.1 Basic Sensitivity Theorem

Theorem 1.1 (Basic Sensitivity Theorem, [1])

Proof

1.3 Polytopes

Definition 1.9

Definition 1.10

1.3.1 Approaches for the Removal of Redundant Constraints

Theorem 1.2 ([3])

Remark 1.3

Remark 1.4

1.3.1.1 Lower‐Upper Bound Classification

1.3.1.2 Solution of Linear Programming Problem

Remark 1.5

1.3.2 Projections

Definition 1.11 (Projection [7])

Definition 1.12 (Hybrid Projection)

1.3.3 Modeling of the Union of Polytopes

1.4 Organization of the Book

References

Notes

2 Multi‐parametric Linear Programming

Remark 2.1

2.1 Solution Properties. Remark 2.2

2.1.1 Local Properties

Remark 2.3

Lemma 2.1

Proof

Lemma 2.2

Proof

2.1.2 Global Properties

Theorem 2.1 (The Solution of mp‐LP Problems)

Proof

Definition 2.1 (mp‐LP Graph)

Theorem 2.2 (The Connected‐graph Theorem)

Proof

2.2 Degeneracy

2.2.1 Primal Degeneracy

2.2.2 Dual Degeneracy

Remark 2.4

2.2.3 Connections Between Degeneracy and Optimality Conditions

2.3 Critical Region Definition

2.4 An Example: Chicago to Topeka

2.4.1 The Deterministic Solution

2.4.2 Considering Demand Uncertainty

Remark 2.5

2.4.3 Interpretation of the Results

2.5 Literature Review

References

Notes

3 Multi‐Parametric Quadratic Programming

Remark 3.1

3.1 Calculation of the Parametric Solution. Remark 3.2

3.1.1 Solution via the Basic Sensitivity Theorem

Remark 3.3

3.1.2 Solution via the Parametric Solution of the KKT Conditions

3.2 Solution Properties. 3.2.1 Local Properties

Remark 3.4

3.2.2 Global Properties

Theorem 3.1 (The Solution of mp‐QP Problems)

Proof

3.2.3 Structural Analysis of the Parametric Solution

Theorem 3.2 (Active Set of Adjacent Region)

Proof

Lemma 3.1

Proof

Lemma 3.2

Proof

Definition 3.1 (mp‐QP Graph)

Theorem 3.3 (Connected Graph for mp‐QP Problems)

Proof

3.3 Chicago to Topeka with Quadratic Distance Cost

Remark 3.5

3.3.1 Interpretation of the Results

3.4 Literature Review

Remark 3.6

References

Notes

4 Solution Strategies for mp‐LP and mp‐QP Problems

4.1 General Overview

Remark 4.1

4.2 The Geometrical Approach

4.2.1 Define A Starting Point

Remark 4.2

4.2.2 Fix in Problem 4.1, and Solve the Resulting QP

4.2.3 Identify The Active Set for The Solution of The QP Problem

4.2.4 Move Outside the Found Critical Region and Explore the Parameter Space

4.3 The Combinatorial Approach

Remark 4.3

4.3.1 Pruning Criterion

Lemma 4.1

Proof

Remark 4.4

4.4 The Connected‐Graph Approach

Remark 4.6

4.5 Discussion

Remark 4.7

4.6 Literature Review

Remark 4.8

References

Notes

5 Multi‐parametric Mixed‐integer Linear Programming

Remark 5.1

5.1 Solution Properties. 5.1.1 From mp‐LP to mp‐MILP Problems

5.1.2 The Properties

Theorem 5.1 (The solution of mp‐MILP problems)

Proof

5.2 Comparing the Solutions from Different mp‐LP Problems. Remark 5.2

Remark 5.3

5.2.1 Identification of Overlapping Critical Regions

5.2.2 Performing the Comparison

5.2.3 Constraint Reversal for Coverage of Parameter Space

5.3 Multi‐parametric Integer Linear Programming

Remark 5.4

5.4 Chicago to Topeka Featuring a Purchase Decision

5.4.1 Interpretation of the Results

5.5 Literature Review

References

Notes

6 Multi‐parametric Mixed‐integer Quadratic Programming

Remark 6.1

6.1 Solution Properties. 6.1.1 From mp‐QP to mp‐MIQP Problems

6.1.2 The Properties

Theorem 6.1

Proof

Lemma 6.1 (Quadratic Boundaries)

Proof

6.2 Comparing the Solutions from Different mp‐QP Problems. Remark 6.2

Remark 6.3

6.2.1 Identification of overlapping critical regions

6.2.2 Performing the Comparison

6.3 Envelope of Solutions

Definition 6.1 (Envelope of Solutions)

6.4 Chicago to Topeka Featuring Quadratic Cost and A Purchase Decision

Remark 6.4

6.4.1 Interpretation of the Results

6.5 Literature Review

References

Notes

7 Solution Strategies for mp‐MILP and mp‐MIQP Problems

7.1 General Framework

7.2 Global Optimization

7.2.1 Introducing Suboptimality

7.3 Branch‐and‐Bound

Remark 7.1

7.4 Exhaustive Enumeration

7.5 The Comparison Procedure

Remark 7.2

7.5.1 Affine Comparison

7.5.2 Exact Comparison

Remark 7.3

7.6 Discussion

7.6.1 Integer Handling

7.6.2 Comparison Procedure

7.7 Literature Review

References

Notes

8 Solving Multi‐parametric Programming Problems Using MATLAB®

8.1 An Overview over the Functionalities of POP

8.2 Problem Solution. 8.2.1 Solution of mp‐QP Problems

8.2.2 Solution of mp‐MIQP Problems

8.2.3 Requirements and Validation

8.2.4 Handling of Equality Constraints

8.2.5 Solving Problem (7.2)

8.3 Problem Generation

8.4 Problem Library

8.4.1 Merits and Shortcomings of The Problem Library

8.5 Graphical User Interface (GUI)

8.6 Computational Performance for Test Sets. Remark 8.1

8.6.1 Continuous Problems

8.6.2 Mixed‐integer Problems

8.7 Discussion

Acknowledgments

References

Notes

9 Other Developments in Multi‐parametric Optimization

9.1 Multi‐parametric Nonlinear Programming

9.1.1 The Convex Case

9.1.2 The Non‐convex Case

9.2 Dynamic Programming via Multi‐parametric Programming

Remark 9.1

9.2.1 Direct and Indirect Approaches

9.3 Multi‐parametric Linear Complementarity Problem

Remark 9.2

9.4 Inverse Multi‐parametric Programming

9.5 Bilevel Programming Using Multi‐parametric Programming

Remark 9.3

9.6 Multi‐parametric Multi‐objective Optimization

Remark 9.4

References

Notes

10 Multi‐parametric/Explicit Model Predictive Control. 10.1 Introduction

10.2 From Transfer Functions to Discrete Time State‐Space Models

10.3 From Discrete Time State‐Space Models to Multi‐parametric Programming

Remark 10.1

Remark 10.2

Remark 10.3

Remark 10.4

Remark 10.5

Remark 10.6

10.4 Explicit LQR – An Example of mp‐MPC. 10.4.1 Problem Formulation and Solution

10.4.2 Results and Validation

10.5 Size of the Solution and Online Computational Effort

References

Notes

11 Extensions to Other Classes of Problems

11.1 Hybrid Explicit MPC

11.1.1 Explicit Hybrid MPC – An Example of mp‐MPC

11.1.2 Results and Validation

11.2 Disturbance Rejection

11.2.1 Explicit Disturbance Rejection – An Example of mp‐MPC

11.2.2 Results and Validation

11.3 Reference Trajectory Tracking

11.3.1 Reference Tracking to LQR Reformulation

11.3.2 Explicit Reference Tracking – An Example of mp‐MPC

11.3.3 Results and Validation

11.4 Moving Horizon Estimation. 11.4.1 Multi‐parametric Moving Horizon Estimation

11.4.1.1 Current State

11.4.1.2 Recent Developments

11.4.1.3 Future Outlook

11.5 Other Developments in Explicit MPC

References

Notes

12 PAROC: PARametric Optimization and Control. 12.1 Introduction

12.2 The PAROC Framework

12.2.1 “High Fidelity” Modeling and Analysis

12.2.2 Model Approximation

12.2.2.1 Model Approximation Algorithms: A User Perspective Within the PAROC Framework

12.2.2.1.1 Model Approximation: An Outline

Data Collection

Polish and Present Data

Data Filtering

Choosing the Model Structure

The Number of States

Discrete or Continuous Time Representation

The Disturbance Component

The Output Feedthrough

The Focus of the Model

12.2.2.1.2 Model Fitting

12.2.2.1.3 Model Validation and Accepting the Model

12.2.3 Multi‐parametric Programming

12.2.4 Multi‐parametric Moving Horizon Policies

Remark 12.1

12.2.5 Software Implementation and Closed‐Loop Validation. 12.2.5.1 Multi‐parametric Programming Software

12.2.5.2 Integration of PAROC in gPROMS® ModelBuilder

12.3 Case Study: Distillation Column

12.3.1 “High Fidelity” Modeling

12.3.2 Model Approximation

12.3.3 Multi‐parametric Programming, Control, and Estimation

12.3.4 Closed‐Loop Validation

12.3.5 Conclusion

12.4 Case Study: Simple Buffer Tank. 12.5 The Tank Example

12.5.1 “High Fidelity” Dynamic Modeling

12.5.2 Model Approximation

12.5.3 Design of the Multi‐parametric Model Predictive Controller

12.5.4 Closed‐Loop Validation

12.5.5 Conclusion

12.6 Concluding Remarks

References

Notes

A Appendix for the mp‐MPC Chapter 10

Appendix for the mp‐MPC Chapter 11

B.1 Matrices for the mp‐QP Problem Corresponding to the Example of Section 11.3.2

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Operations Research and Management Science

Operations Research and Management Science (ORMS) is a broad, interdisciplinary branch of applied mathematics concerned with improving the quality of decisions and processes and is a major component of the global modern movement towards the use of advanced analytics in industry and scientific research. The Wiley Series in Operations Research and Management Science features a broad collection of books that meet the varied needs of researchers, practitioners, policy makers, and students who use or need to improve their use of analytics. Reflecting the wide range of current research within the ORMS community, the Series encompasses application, methodology, and theory and provides coverage of both classical and cutting edge ORMS concepts and developments. Written by recognized international experts in the field, this collection is appropriate for students as well as professionals from private and public sectors including industry, government, and nonprofit organization who are interested in ORMS at a technical level. The Series is comprised of four sections: Analytics; Decision and Risk Analysis; Optimization Models; and Stochastic Models.

.....

Under the assumptions and the principles of the Basic Sensitivity Theorem, in a neighborhood of the first‐order KKT conditions hold and the value of F() around remains zero. For systems that consist of polynomial objective functions of up to second degree and linear constraints, with respect to the optimization variables and the uncertain parameters, the first‐order Taylor expansion is exact. Hence, the exact multi‐parametric solution can be obtained for the following multi‐parametric quadratic programming problem

(1.21)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Multi-parametric Optimization and Control
Подняться наверх