Statistical Methods and Modeling of Seismogenesis

Statistical Methods and Modeling of Seismogenesis
Автор книги: id книги: 2052343     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (162,71$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Социология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119825043 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.

Оглавление

Eleftheria Papadimitriou. Statistical Methods and Modeling of Seismogenesis

Table of Contents

List of Illustrations

List of Table

Guide

Pages

Statistical Methods and Modeling of Seismogenesis

Preface

1. Kernel Density Estimation in Seismology

1.1. Introduction

1.2. Complexity of magnitude distribution

1.3. Kernel estimation of magnitude distribution

1.4. Implications for hazard assessments

1.5. Interval estimation of magnitude CDF and related hazard parameters

1.6. Transformation to equivalent dimensions

1.7. References

2. Earthquake Simulators Development and Application

2.1. Introduction

2.2. Development of earthquake simulators in the seismological literature

2.2.1. ALLCAL

2.2.2. Virtual quake

2.2.3. RSQSim

2.2.4. ViscoSim

2.2.5. Other simulation codes

2.2.6. Comparisons among simulators

2.3. Conceptual evolution of a physics-based earthquake simulator

2.3.1. A physics-based earthquake simulator (2015)

2.3.2. Frequency-magnitude distribution of the simulated catalog (2015)

2.3.3. Temporal features of the synthetic catalog (2015)

2.3.4. Improvements in the physics-based earthquake simulator (2017–2018)

2.3.5. Application to the seismicity of Central Italy

2.3.6. Further improvements of the simulator code (2019)

2.4. Application of the last version of the simulator to the Nankai mega-thrust fault system

2.5. Appendix 1: Relations among source parameters adopted in the simulation model

2.6. Appendix 2: Outline of the simulation program

2.7. References

3. Statistical Laws of Post-seismic Activity

3.1. Introduction

3.2. Earthquake productivity

3.2.1. The proposed method to study productivity

3.2.2. Earthquake productivity at the global level

3.2.3. Independence of the proximity function

3.2.4. Earthquake productivity at the regional level

3.2.5. Productivity in relation to the threshold of the proximity function

3.2.6. Discussion

3.3. Time-dependent distribution of the largest aftershock magnitude

3.3.1. The distribution of the magnitude of the largest aftershock in relation to time

3.3.2. The agreement between the dynamic Båth law and observations

3.3.3. Discussion

3.4. The distribution of the hazardous period

3.4.1. A model for the duration of the hazardous period

3.4.2. Determining the model parameters

3.4.3. Using the early aftershocks

3.5. Conclusion

3.6. References

4. Explaining Foreshock and the Båth Law Using a Generic Earthquake Clustering Model

4.1. Introduction

4.1.1. Issues related to foreshocks

4.1.2. Issues related to the Båth law

4.1.3. Study objectives

4.2. Theories related to foreshock probability and the Båth law under the assumptions of the ETAS model. 4.2.1. Space–time ETAS model, stochastic declustering and classification of earthquakes

4.2.2. Master equation

4.2.3. Asymptotic property ofF (m′)

4.2.4. Foreshock probabilities and their magnitude distribution in the ETAS model

4.2.5. Explanation of the Båth law by the ETAS model

4.3. Foreshock simulations based on the ETAS model. 4.3.1. Works by Helmstetter and others

4.3.2. Works by Zhuang and others

4.3.3. Evidence of statistics between mainshocks and foreshocks

4.3.4. Different simulation results

4.4. Simulation of the Båth law based on the ETAS model. 4.4.1. On the simulation study by Helmstetter

4.4.2. Observation on Båth’s law for volcanic earthquake swarms

4.5. Conclusion. 4.5.1. Back to the starting point

4.5.2. On the comparison between foreshock probability in the ETAS model and real catalogs

4.5.3. Impracticality of the foreshock concept

4.5.4. What should we do?

4.6. Acknowledgments

4.7. References

5. The Genesis of Aftershocks in Spring Slider Models

5.1. Introduction

5.2. The rate-and-state equation

5.3. The Dieterich model

5.3.1. Time to instability

5.3.2. Initial conditions during stationary seismicity

5.3.3. Effect of a constant stress increase Δτ

5.4. The mechanics of afterslip

5.5. The two-block model

5.5.1. Synthetic catalogs

5.5.1.1. Gutenberg–Richter law

5.6. Conclusion

5.7. References

6. Markov Regression Models for Time Series of Earthquake Counts

6.1. Introduction

6.2. Markov regression HMMs: definition and notation

6.3. Application. 6.3.1. Data

6.3.2. Results

6.4. Conclusion

6.5. Acknowledgments

6.6. References

7. Scaling Properties, Multifractality and Range of Correlations in Earthquake Time Series: Are Earthquakes Random?

7.1. Introduction

7.2. The range of correlations in earthquake time series

7.2.1. Short-range correlations

7.2.2. Long-range correlations

7.3. Scaling properties of earthquake time series

7.3.1. The probability distribution function

7.3.2. A stochastic dynamic mechanism with memory effects

7.3.3. The cumulative distribution function

7.4. Fractal and multifractal structures

7.5. Discussion and conclusions

7.6. References

8. Self-correcting Models in Seismology: Possible Coupling Among Seismic Areas

8.1. Introduction

8.2. Review of applications

8.3. Formulation of the models. 8.3.1. Simple Stress Release Model

8.3.2. Independent Stress Release Model

8.3.3. Linked Stress Release Model

8.4. Applications

8.4.1. Greece and the surrounding area

8.4.2. Gulf of Corinth

8.5. Conclusion

8.6. References

9. Markovian Arrival Processes for Earthquake Clustering Analysis

9.1. Introduction

9.2. State of the art. 9.2.1. Earthquake clustering methods and applications

9.2.2. Hidden Markov models and applications in seismology

9.3. Markovian Arrival Process

9.3.1. Definition and basic results

9.3.2. Parameter fitting

9.3.3. Inference of the latent states

9.4. Methodology and results. 9.4.1. Motivation

9.4.2. Clustering detection procedure

9.5. Conclusion

9.6. References

10. Change Point Detection Techniques on Seismicity Models

10.1. Introduction

10.2. The change point framework

10.3. Changes in a Poisson process

10.4. Changes in the Epidemic Type Aftershock Sequence model

10.5. Changes in the Gutenberg–Richter law

10.6. ZMAP

10.7. Other statistical tests

10.8. Detection of changes without hypothesis testing

10.9. Discussion and conclusion

10.10. References

11. Semi-Markov Processes for Earthquake Forecast

11.1. Introduction

11.2. Semi-Markov processes – preliminaries

11.2.1. Special class of distributions

11.3. Transition probabilities and earthquake occurrence

11.3.1. Likelihood and estimation

11.4. Semi-Markov transition matrix

11.5. Illustrative example

11.6. References

List of Authors

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Statistics, Field Director – Nikolaos Limnios and Kerrie Mengersen Geostatistics

.....

When the existence of a strict, single value upper bound to the magnitude range, Mmax, is assumed, the estimators of magnitude distribution functions are:

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Statistical Methods and Modeling of Seismogenesis
Подняться наверх