Introduction to Solid State Physics for Materials Engineers

Introduction to Solid State Physics for Materials Engineers
Автор книги: id книги: 2031518     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 6546,03 руб.     (60,61$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527831593 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.  Introduction to Solid State Physics for Materials Engineers  offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented.  The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book:  Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics,  Introduction to Solid State Physics for Materials Engineers  is an important guide to help foster an understanding of solid state physics.

Оглавление

Emil Zolotoyabko. Introduction to Solid State Physics for Materials Engineers

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Introduction to Solid State Physics for Materials Engineers

Preface

Introduction

1 General Impact of Translational Symmetry in Crystals on Solid State Physics

1.1 Crystal Symmetry in Real Space

1.2 Symmetry and Physical Properties in Crystals

1.3 Wave Propagation in Periodic Media and Construction of Reciprocal Lattice

1.A Symmetry Constraints on Rotation Axes

1.B Twinning in Crystals

2 Electron Waves in Crystals

2.1 Electron Behavior in a Periodic Potential and Energy Gap Formation

2.2 The Brillouin Zone

2.3 Band Structure

2.4 Graphene

2.5 Fermi Surface

2.A Cyclotron Resonance and Related Phenomena

3 Elastic Wave Propagation in Periodic Media, Phonons, and Thermal Properties of Crystals

3.1 Linear Chain of the Periodically Positioned Atoms

3.2 Phonons and Heat Capacity

3.3 Thermal Vibrations of Atoms in Crystals

3.4 Crystal Melting

3.5 X-ray and Neutron Interaction with Phonons

3.5.1 Debye–Waller Factor

3.6 Lattice Anharmonicity

3.7 Velocities of Bulk Acoustic Waves

3.8 Surface Acoustic Waves

3.A Bose's Derivation of the Planck Distribution Function

4 Electrical Conductivity in Metals

4.1 Classical Drude Theory

4.2 Quantum–Mechanical Approach

4.3 Phonon Contribution to Electrical Resistivity

4.4 Defects' Contributions to Metal Resistivity

4.A Derivation of the Fermi-Dirac Distribution Function

5 Electron Contribution to Thermal Properties of Crystals

5.1 Electronic Specific Heat

5.2 Electronic Heat Conductivity and the Wiedemann–Franz Law

5.3 Thermoelectric Phenomena

5.4 Thermoelectric Materials

6 Electrical Conductivity in Semiconductors

6.1 Intrinsic (Undoped) Semiconductors

6.2 Extrinsic (Doped) Semiconductors

6.3 p–n Junction

6.4 Semiconductor Transistors

6.A Estimation of Exciton's Radius and Binding Energy

7 Work Function and Related Phenomena

7.1 Work Function of Metals

7.2 Photoelectric Effect

7.2.1 Angle-Resolved Photoemission Spectroscopy (APRES)

7.3 Thermionic Emission

7.4 Metal-Semiconductor Junction

7.A Image Charge Method

7.B A Free Electron Cannot Absorb a Photon

8 Light Interaction with Metals and Dielectrics

8.1 Skin Effect in Metals

8.2 Light Reflection from a Metal

8.3 Plasma Frequency

8.4 Introduction to Metamaterials

8.5 Structural Colors

8.A Acoustic Metamaterials

9 Light Interaction with Semiconductors

9.1 Solar Cells

9.1.1 The Grätzel Cell

9.1.2 Halide Perovskite Solar Cells

9.2 Solid State Radiation Detectors

9.2.1 Infrared Detectors

9.3 Charge-Coupled Devices (CCDs)

9.4 Light-Emitting Diodes (LEDs)

9.5 Semiconductor Lasers

9.6 Photonic Materials

10 Cooperative Phenomena in Electron Systems: Superconductivity

10.1 Phonon-Mediated Cooper Pairing Mechanism

10.2 Direct Measurements of the Superconductor Energy Gap

10.3 Josephson Effect

10.4 Meissner Effect

10.5 SQUID

10.6 High-Temperature Superconductivity

10.A Fourier Transform of the Coulomb Potential

10.B The Josephson Effect Theory

10.C Derivation of the Critical Magnetic Field in Type I Superconductors

11 Cooperative Phenomena in Electron Systems: Ferromagnetism

11.1 Paramagnetism and Ferromagnetism

11.2 The Ising Model

11.3 Magnetic Structures

11.4 Magnetic Domains

11.5 Magnetic Materials

11.6 Giant Magnetoresistance

11.A The Elementary Magnetic Moment of an Electron Produced by its Orbital Movement

11.B Pauli Paramagnetism

11.C Magnetic Domain Walls

12 Ferroelectricity as a Cooperative Phenomenon

12.1 The Theory of Ferroelectric Phase Transition

12.2 Ferroelectric Domains

12.3 The Piezoelectric Effect and Its Application in Ferroelectric Devices

12.4 Other Application Fields of Ferroelectrics

13 Other Examples of Cooperative Phenomena in Electron Systems

13.1 The Mott Metal–Insulator Transition

13.2 Classical and Quantum Hall Effects

13.3 Topological Insulators

13.A Electron Energies and Orbit Radii in the Simplified Bohr Model of a Hydrogen-like Atom

Further Reading

List of Prominent Scientists Mentioned in the Book

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Emil Zolotoyabko

.....

For the fourth rank tensor, there are several optional ways for its construction. It may connect two tensors of rank 2, e.g. stress, σik, and strain, elm, as the stiffness tensor, Ciklm (tensor of elastic modules used in Chapter 3), does:

(1.18)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Introduction to Solid State Physics for Materials Engineers
Подняться наверх