Reliability Analysis, Safety Assessment and Optimization

Reliability Analysis, Safety Assessment and Optimization
Автор книги: id книги: 2381043     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 10403,6 руб.     (104,44$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119265863 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book is a comprehensive overview of the recently developed methods for assessing and optimizing system reliability and safety. It consists of two main parts, for assessment and optimization methods, respectively. The former covers multi-state system modelling and reliability evaluation, Markov processes, Monte Carlo simulation and uncertainty treatments under poor knowledge. The reviewed methods range from piecewise-deterministic Markov process to belief functions. The latter covers mathematical programs, evolutionary algorithms, multi-objective optimization and optimization under uncertainty. The reviewed methods range from non-dominated sorting genetic algorithm to robust optimization. This book also includes the applications of the assessment and optimization method on real world cases, particularly for the reliability and safety of renewable energy systems. From this point of view, the book bridges the gap between theoretical development and engineering practice.

Оглавление

Enrico Zio. Reliability Analysis, Safety Assessment and Optimization

Wiley Series in Quality & Reliability Engineering

Reliability Analysis, Safety Assessment and Optimization. Methods and Applications in Energy Systems and Other Applications

Contents

List of Illustrations

List of Tables

Guide

Pages

Series Editor’s Foreword

Preface

Acknowledgments

List of Abbreviations

Notations. Notations: Part I

Notations: Part II

Notation: Part III

1 Reliability Assessment

1.1 Definitions of Reliability

1.1.1 Probability of Survival

1.1.2 Probability of Time to Failure

1.2 Component Reliability Modeling

1.2.1 Discrete Probability Distributions

1.2.1.1 Binomial Distribution

1.2.1.2 Poisson Distribution

1.2.2 Continuous Probability Distributions

1.2.2.1 Exponential Distribution

1.2.2.2 Weibull Distribution

1.2.2.3 Gamma Distribution

1.2.2.4 Lognormal Distribution

1.2.3 Physics-of-Failure Equations

1.2.3.1 Paris’ Law for Crack Propagation

1.2.3.2 Archard’s Law for Wear

1.3 System Reliability Modeling

1.3.1 Series System

1.3.2 Parallel System

1.3.3 Series-parallel System

1.3.4 K-out-of-n System

1.3.5 Network System

1.4 System Reliability Assessment Methods

1.4.1 Path-set and Cut-set Method

1.4.2 Decomposition and Factorization

1.4.3 Binary Decision Diagram

Example 1.5

Solution

1.5 Exercises

References

2 Optimization

2.1 Optimization Problems. 2.1.1 Component Reliability Enhancement

2.1.2 Redundancy Allocation

2.1.3 Component Assignment

2.1.4 Maintenance and Testing

2.1.4.1 Age Replacement Policy

2.1.4.2 Periodic Replacement Policy

2.1.4.3 Block Replacement Policy

2.2 Optimization Methods

2.2.1 Mathematical Programming

2.2.1.1 Branch-and-Bound (B&B)

2.2.1.2 Dynamic Programming (DP)

2.2.1.3 Column Generation (CG)

2.2.2 Meta-heuristics

2.2.2.1 Genetic Algorithm (GA)

2.2.2.2 Differential Evolution (DE)

2.2.2.3 Particle Swam Optimization (PSO)

2.3 Exercises

References

3 Multi-State Systems (MSSs)

3.1 Classical Multi-state Models

3.2 Generalized Multi-state Models

3.3 Time-dependent Multi-state Models

3.4 Methods to Evaluate Multi-state System Reliability

3.4.1 Methods Based on MPVs or MCVs

3.4.2 Methods Derived from Binary State Reliability Assessment

3.4.3 Universal Generating Function Approach

3.4.4 Monte Carlo Simulation

3.5 Exercises

References

4 Markov Processes

4.1 Continuous Time Markov Chain (CMTC)

Example 4.1 [7]

Example 4.2

Example 4.3

4.2 In homogeneous Continuous Time Markov Chain

Example 4.4

4.3 Semi-Markov Process (SMP)

Example 4.5

4.3.1 Markov Renewal Process

Example 4.6

Example 4.7

4.4 Piecewise Deterministic Markov Process (PDMP)

4.5 Exercises

References

5 Monte Carlo Simulation (MCS) for Reliability and Availability Assessment. 5.1 Introduction

5.2 Random Variable Generation

5.2.1 Random Number Generation

5.2.1.1 Linear Recurrences

5.2.2 Random Variable Generation

5.2.2.1 Inverse-transform Method

5.2.2.2 Acceptance-rejection Method

5.2.2.3 Multivariate Random Variable Generation

5.3 Random Process Generation. 5.3.1 Markov Chains

5.3.2 Markov Jump Processes

5.4 Markov Chain Monte Carlo (MCMC)

5.4.1 Metropolis-Hastings (M-H) Algorithm

5.4.2 Gibbs Sampler

5.4.3 Multiple-try Metropolis-Hastings (M-H) Method

5.5 Rare-Event Simulation

5.5.1 Importance Sampling

5.5.2 Repetitive Simulation Trials after Reaching Thresholds (RESTART)

5.6 Exercises

Appendix

References

6 Uncertainty Treatment under Imprecise or Incomplete Knowledge

6.1 Interval Number and Interval of Confidence. 6.1.1 Definition and Basic Arithmetic Operations

6.1.2 Algebraic Properties

6.1.3 Order Relations

6.1.4 Interval Functions

6.1.4.1 Quadratic Function

6.1.4.2 Exponential Function

6.1.5 Interval of Confidence

6.2 Fuzzy Number

6.3 Possibility Theory

6.3.1 Possibility Propagation

6.4 Evidence Theory

6.4.1 Data Fusion

6.5 Random-fuzzy Numbers (RFNs)

6.5.1 Universal Generating Function (UGF) Representation of Random-fuzzy Numbers

6.5.2 Hybrid UGF (HUGF) Composition Operator

6.6 Exercises

References

7 Applications

7.1 Distributed Power Generation System Reliability Assessment. 7.1.1 Reliability of Power Distributed Generation (DG) System

7.1.2 Energy Source Models and Uncertainties

7.1.3 Algorithm for the Joint Propagation of Probabilistic and Possibilistic Uncertainties

7.1.4 Case Study

7.2 Nuclear Power Plant Components Degradation. 7.2.1 Dissimilar Metal Weld Degradation

7.2.2 MCS Method

7.2.3 Numerical Results

References

PART III Optimization Methods and Applications

8 Mathematical Programming

8.1 Linear Programming (LP)

8.1.1 Standard Form and Duality

8.2 Integer Programming (IP)

8.3 Exercises

References

9 Evolutionary Algorithms (EAs)

9.1 Evolutionary Search

Algorithm 9.1 Monte Carlo search

Algorithm 9.2 (1+1) Evolutionary Algorithm

9.2 Genetic Algorithm (GA)

Algorithm 9.3 Genetic Algorithm

9.2.1 Encoding and Initialization

9.2.2 Evaluation

9.2.3 Selection

9.2.4 Mutation

9.2.5 Crossover

Procedure 9.1 Order 1 crossover

9.2.6 Elitism

9.2.7 Termination Condition and Convergence

9.3 Other Popular EAs

Algorithm 9.4 Differential Evolution

Algorithm 9.5 Particle Swarm Optimization

9.4 Exercises

References

10 Multi-Objective Optimization (MOO)

10.1 Multi-objective Problem Formulation

10.2 MOO-to-SOO Problem Conversion Methods

10.2.1 Weighted-sum Approach

10.2.2 ε-constraint Approach

10.2.3 Goal Programming

10.3 Multi-objective Evolutionary Algorithms

10.3.1 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)

Procedure 10.1 Nsga-II

Algorithm 10.1 Fast non-dominated sorting

10.3.2 Improved Strength Pareto Evolutionary Algorithm (SPEA 2)

Procedure 10.2 SPEA 2

10.4 Performance Measures

10.5 Selection of Preferred Solutions

10.5.1 “Min-max” Method

10.5.2 Compromise Programming Approach

10.6 Guidelines for Solving RAMS+C Optimization Problems

10.7 Exercises

References

11 Optimization under Uncertainty

11.1 Stochastic Programming (SP)

11.1.1 Two-stage Stochastic Linear Programs with Fixed Recourse

Sample Average Approximation

L-shaped method

Standard L-shaped Algorithm

11.1.2 Multi-stage Stochastic Programs with Recourse

11.2 Chance-Constrained Programming

11.2.1 Model and Properties

11.2.2 Example

11.3 Robust Optimization (RO)

11.3.1 Uncertain Linear Optimization (LO) and its Robust Counterparts

11.3.2 Tractability of Robust Counterparts

11.3.3 Robust Optimization (RO) with Cardinality Constrained Uncertainty Set

11.3.4 Example

11.4 Exercises

Notes

References

12 Applications

12.1 Multi-objective Optimization (MOO) Framework for the Integration of Distributed Renewable Generation and Storage

12.1.1 Description of Distributed Generation (DG) System

12.1.2 Optimal Power Flow (OPF)

12.1.3 Performance Indicators

12.1.4 MOO Problem Formulation

12.1.5 Solution Approach and Case Study Results

12.2 Redundancy Allocation for Binary-State Series-Parallel Systems (BSSPSs) under Epistemic Uncertainty

12.2.1 Problem Description

12.2.2 Robust Model

12.2.3 Experiment

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Dr. Andre V. Kleyner

Series Editor

.....

If T denotes the failure time of an item with gamma distribution, the reliability function will be

The hazard rate function is

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Reliability Analysis, Safety Assessment and Optimization
Подняться наверх