Electromagnetic Methods in Geophysics

Electromagnetic Methods in Geophysics
Автор книги: id книги: 2147568     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19304,9 руб.     (186$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119771005 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Discover the utility of four popular electromagnetic geophysical techniques In GeoRadar, FDEM, TDEM, and AEM Methods , accomplished researchers Fabio Giannino and Giovanni Leucci deliver an in-depth exploration of the theory and application of four different electromagnetic geophysical techniques: ground penetrating radar, the frequency domain electromagnetic method, the time domain electromagnetic method, and the airborne electromagnetic method. The authors offer a full description of each technique as they relate to the economics, planning, and logistics of deploying each of them on-site. The book also discusses the potential output of each method and how it can be combined with other sources of below- and above-ground information to create a digitized common point cloud containing a wide variety of data. Giannino and Leucci rely on 25 years of professional experience in over 40 countries around the world to provide readers with a fulsome description of the optimal use of GPR, FDEM, TDEM, and AEM, demonstrating their flexibility and applicability to a wide variety of use cases. Readers will also benefit from the inclusion of: A thorough introduction to electromagnetic theory, including the operative principles and theory of ground penetrating radar (GPR) and the frequency domain electromagnetic method (FDEM) An exploration of hardware architecture and surveying, including GPR, FDEM, time domain electromagnetic method (TDEM), and airborne electromagnetic (AEM) surveying A collection of case studies, including a multiple-geophysical archaeological GPR survey in Turkey and a UXO search in a building area in Italy using FDEM /li> Discussions of planning and mobilizing a campaign, the shipment and clearance of survey equipment, and managing the operative aspects of field activity Perfect for forensic and archaeological geophysicists, GeoRadar, FDEM, TDEM, and AEM Methods will also earn a place in the libraries of anyone seeking a one-stop reference for the planning and deployment of GDR, FDEM, TDEM, and AEM surveying techniques.

Оглавление

Fabio Giannino. Electromagnetic Methods in Geophysics

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Electromagnetic Methods in Geophysics. Applications in GeoRadar, FDEM, TDEM, and AEM

PREFACE

REFERENCES

ACKNOWLEDGEMENTS

1 Introduction

2 Electromgnetic (EM) Theory: An Outline. 2.1. GROUND PENETRATING RADAR (GPR): OPERATIVE PRINCIPLES AND THEORY. 2.1.1. General

2.1.2. Principles of the Method

2.1.3. Electromagnetic wave propagation

REFERENCES

2.2. FREQUENCY DOMAIN ELECTROMAGNETIC (FDEM) METHOD: OPERATIVE PRINCIPLE AND THEORY. 2.2.1. EM Waves and Fundamental Quantities

2.2.2. The Relation Between the Primary and Secondary EM Field

2.2.3. The “Low Induction Number” Condition

2.2.4. The EM signal with respect to the depth

REFERENCES

2.3. TIME DOMAIN ELECTROMAGNETIC (TDEM) METHOD: OPERATIVE PRINCIPLE AND THEORY. 2.3.1. TDEM (Time Domain Electromagnetic)

REFERENCES

2.4. AIRBORNE ELECTROMAGNETIC (AEM) METHOD: OPERATIVE PRINCIPLE AND THEORY. 2.4.1. AEM (Airborne Electromagnetic)

REFERENCES

3 GPR Surveying. 3.1. GPR: SYSTEMS ARCHITECTURE. 3.1.1. General

3.1.2. Sampling

3.1.3. Resolution

3.1.4. Data Sampling for a Pulsed System

3.1.5. Data Sampling for a Stepped Frequency Georadar System

3.1.6. Antenna Parameters and Radar Equation

3.1.7. The “Minimum” Elements as Essential Parts of a Georadar: Radar Architecture

3.2. SURVEY DESIGN

3.3. DATA ACQUISITION

3.4. DATA ANALYSIS

3.5. DATA INTERPRETATION

REFERENCES

4 FDEM Surveying. 4.1. FDEM SYSTEMS ARCHITECTURE

4.1.1. Transmitter

4.1.2. Receiver

4.1.3. Control Unit

4.1.4. Positioning

4.1.5. Other Parameters

4.2. SURVEY DESIGN

4.3. DATA ACQUISITION

4.3.1. FDEM Data Acquisition Modes

4.4. DATA ANALYSIS

4.5. DATA INTERPRETATION

REFERENCES

5 TDEM Surveying. 5.1. TDEM SYSTEMS ARCHITECTURE

5.1.1. Transmitter

5.1.2. Receiver

5.1.3. Control Unit

5.1.4. Power Supply

5.1.5. Positioning

5.1.6. Other Parameters

5.2. SURVEY DESIGN

5.3. DATA ACQUISITION

5.4. DATA ANALYSIS

5.5. DATA INTERPRETATION

REFERENCES

6 AEM Surveying. 6.1. AEM SYSTEMS ARCHITECTURE

6.1.1. Transmitter

6.1.2. Receiver

6.1.3. Control Unit

6.1.4. Mechanical

6.1.5. Power Supply

6.1.6. Other Parameters

6.2. SURVEY DESIGN

6.3. DATA ACQUISITION

6.4. DATA ANALYSIS

6.5. DATA INTERPRETATION

REFERENCES

7 Case Studies

7.1. GPR: MULTIPLE GEOPHYSICAL ARCHAEOLOGICAL SURVEYS IN TURKEY

7.1.1. Introduction

7.1.2. Geophysical Methods and Instruments

7.1.3. The Martyrium of St Philip

7.1.4. Civil Agora

7.1.5. Sanctuary of Apollo

7.1.6. Gymnasium

7.1.7. Conclusions

7.2. GPR: MASSIVE ARRAY ARCHAEOLOGICAL SURVEY IN ITALY

7.2.1. Introduction

7.2.2. Data Acqusition and Instrumentation

7.2.3. Data Processing

7.2.4. Results and Discussion

7.2.5. Conclusion

7.3. GPR: ARCHAEOLOGICAL AND MONUMENTAL APPLICATION AT A CATHEDRAL IN ITALY

7.3.1. Introduction

7.3.2. GPR Data Acquisition, Processing, and Interpretation

7.3.3. The Crypt

7.3.4. The Cathedral

7.3.5. Conclusions

7.4. GPR: ARCHAEOLOGICAL APPLICATION IN PERU

7.4.1. Introduction

7.4.2. GPR Data Acquisition and Analysis

7.4.3. Conclusions

7.5. GPR: MONUMENTAL HERITAGE CONSERVATION AT A HYPOGEAL SITE IN ITALY

7.5.1. Introduction

7.5.2. Data Acquisition and Processing

7.5.3. Conclusions

7.6. GPR: CONCRETE REBARS DETECTION IN SOUTH‐EUROPE

7.6.1. Introduction

7.6.2. Data Acquisition and Instrumentation

7.6.3. Data Processing

7.6.4. Results and Discussion

7.6.5. Conclusion

7.7. GPR: CONCRETE REBARS DETECTION AND WATER CONTENT ESTIMATE IN ITALY

7.7.1. Introduction

7.7.2. FIRST Experiment: Relationship Between Volumetric Water Content and Electromagnetic Wave Parameters

7.7.3. SECOND Experiment: Relationship Between Reinforced Bar Diameter in Concrete and Electromagnetic Wave Amplitude

7.7.4. Application of the Experimental Experience: The Case of the Basilica of Santa Croce, Lecce‐ Italy

7.7.5. Conclusions

7.8. GPR: LARGE AREA UNDERGROUND UTILITY MAPPING IN ITALY

7.8.1. Introduction

7.8.2. Data Acqusition and Instrumentation

7.8.3. Data Processing

7.8.4. Results and Discussion

7.8.5. Conclusions

7.9. GPR: UTILITY MAPPING AND FIBRE OPTICS RECONNAISSANCE IN SCANDINAVIA

7.9.1. Introduction

7.9.2. Data Acqusition and Instrumentation

7.9.3. Data Processing

7.9.4. Results and Discussion

7.9.5. Conclusion

7.10. GPR: UTILITY AND CAVITY MAPPING IN TAIWAN

7.10.1. Introduction

7.10.2. Data Acqusition and Instrumentation

7.10.3. Data Processing

7.10.4. Results and Discussion

7.11. GPR: PIPES LEAKAGE DETECTION EXPERIMENTAL TEST AND APPLICATION IN ITALY

7.11.1. Introduction

7.11.2. Description of the Considered Experimental Cases

7.11.3. Results and Discussion. 7.11.3.1. GPR results in EC1

7.11.3.2. GPR results in EC2

7.11.3.3. GPR results in EC3

7.11.4. Conclusions

7.12. GPR: PIPES LEAKAGE DETECTION IN ITALY

7.12.1. INTRODUCTION

7.12.2. Data Acquisition and Results

7.12.3. CONCLUSIONS

7.13. GPR: BRIDGE DECK STUDY IN JAPAN

7.13.1. Introduction

7.13.2. Data Acqusition and Instrumentation

7.13.3. Data Processing

7.13.4. Results and Discussion

7.14. FDEM: UXO SEARCH IN BUILDING AREA IN ITALY

7.14.1. Introduction

7.14.2. Results and Discussion

7.15. FDEM: SEARCH OF VARIOUS OBJECT IN A TEST SITE IN ITALY

7.15.1. Introduction

7.15.2. Results and Discussion

7.16. FDEM: POLLUTANTS SEARCH IN ITALY

7.16.1. Introduction

7.16.2. Results and Discussion

7.17. FDEM: FORENSIC SEARCH IN SOUTH EUROPE

7.17.1. Introduction

7.17.2. Data Acquisition and Instrumentation

7.17.3. Data Analysis and Results

7.17.4. Conclusion

7.18. TDEM: GEOLOGIC MODELLING FOR A REFERENCE SITE IN ITALY

7.18.1. Introduction

7.18.2. Data Acquisition and Instrumentation

7.18.3. Data Analysis and Results

7.18.4. Conclusion

7.19. AEM: GEOPHYSICAL AND GEOLOGICAL MODELLING OF BURIED VALLEYS

7.19.1. Introduction

7.19.2. Data Acquisition and Data Analisys

7.19.3. Results and Discussion

7.19.3.1. AeroTEM modeling

7.19.3.2. VTEM modeling

7.19.4. Conclusion

7.20. AEM: EFFECT OF INDUCED POLARIZATION OVER AEM DATA

7.20.1. Introduction

7.20.2. Methods and Results

7.20.3. Data Acqusition and Results

7.20.4. Discussion and Conclusion

REFERENCES

8 General on Planning and Logistic

8.1. PLANNING A CAMPAIGN AND MOBILIZATION ASPECTS

8.2. SHIPMENT AND CLEARANCE OF SURVEY EQUIPMENT

8.3. MANAGING THE OPERATIVE ASPECTS OF THE FIELD ACTIVITY

8.4. DE‐MOBILIZATION

8.5. REPORTING

INDEX

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Fabio Giannino

.....

When an alternating current flows within the transmitter coil, to this electric current is associated a magnetic field which, in turn, induces eddy current, in the subsoil; to the eddy currents, as in the case of the primary field, is associated a secondary magnetic field, that is sensed (detected) by the receiver coil, together with the primary magnetic field due to the primary electric field.

The secondary magnetic field, is a complex function of the transmitting and receiving coils spacing (s), of the transmitter frequency (f), and of the subsoil conductivity σ.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Electromagnetic Methods in Geophysics
Подняться наверх