Mobile Robots

Mobile Robots
Автор книги: id книги: 1887899     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13203,4 руб.     (143,79$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119534822 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Presents the normal kinematic and dynamic equations for robots, including mobile robots, with coordinate transformations and various control strategies This fully updated edition examines the use of mobile robots for sensing objects of interest, and focus primarily on control, navigation, and remote sensing. It also includes an entirely new section on modeling and control of autonomous underwater vehicles (AUVs), which exhibits unique complex three-dimensional dynamics. Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs, Second Edition starts with a chapter on kinematic models for mobile robots. It then offers a detailed chapter on robot control, examining several different configurations of mobile robots. Following sections look at robot attitude and navigation. The application of Kalman Filtering is covered. Readers are also provided with a section on remote sensing and sensors. Other chapters discuss: target tracking, including multiple targets with multiple sensors; obstacle mapping and its application to robot navigation; operating a robotic manipulator; and remote sensing via UAVs. The last two sections deal with the dynamics modeling of AUVs and control of AUVs. In addition, this text: Includes two new chapters dealing with control of underwater vehicles Covers control schemes including linearization and use of linear control design methods, Lyapunov stability theory, and more Addresses the problem of ground registration of detected objects of interest given their pixel coordinates in the sensor frame Analyzes geo-registration errors as a function of sensor precision and sensor pointing uncertainty Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs is intended for use as a textbook for a graduate course of the same title and can also serve as a reference book for practicing engineers working in related areas.

Оглавление

Feitian Zhang. Mobile Robots

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Mobile Robots. Navigation, Control and Sensing, Surface Robots and AUVs

Preface

About the Authors

Introduction

1 Kinematic Models for Mobile Robots. 1.1 Introduction

1.2 Vehicles with Front‐Wheel Steering

1.3 Vehicles with Differential‐Drive Steering

Exercises

References

2 Mobile Robot Control. 2.1 Introduction

2.2 Front‐Wheel Steered Vehicle, Heading Control

Example 1

Solution 1

2.3 Front‐Wheel Steered Vehicle, Speed Control

2.4 Heading and Speed Control for the Differential‐Drive Robot

2.5 Reference Trajectory and Incremental Control, Front‐Wheel Steered Robot

2.6 Heading Control of Front‐Wheel Steered Robot Using the Nonlinear Model

2.7 Computed Control for Heading and Velocity, Front‐Wheel Steered Robot

2.8 Heading Control of Differential‐Drive Robot Using the Nonlinear Model

2.9 Computed Control for Heading and Velocity, Differential‐Drive Robot

2.10 Steering Control Along a Path Using a Local Coordinate Frame

Example 2

Solution 2

2.11 Optimal Steering of Front‐Wheel Steered Vehicle

Example 3

Solution 3

Example 4

Solution 4

Example 5

Solution 5

Example 6

Solution 6

Example 7

Solution 7

Example 8

Example 9

2.12 Optimal Steering of Front‐Wheel Steered Vehicle, Free Final Heading Angle

Exercises

References

3 Robot Attitude

3.1 Introduction

3.2 Definition of Yaw, Pitch, and Roll

3.3 Rotation Matrix for Yaw

Example 1

Solution 1

3.4 Rotation Matrix for Pitch

Example 2

Solution 2

3.5 Rotation Matrix for Roll

Example 3

Solution 3

3.6 General Rotation Matrix

3.7 Homogeneous Transformation

Example 4

Solution 4

3.8 Rotating a Vector

Exercises

References

4 Robot Navigation. 4.1 Introduction

4.2 Coordinate Systems

4.3 Earth‐Centered Earth‐Fixed Coordinate System

Example 1

Solution 1

Example 2

Solution 2

4.4 Associated Coordinate Systems

Example 3

Solution 3

Example 4

Solution 4

4.5 Universal Transverse Mercator Coordinate System

Example 5

Solution 5

4.6 Global Positioning System

4.7 Computing Receiver Location Using GPS, Numerical Methods

4.7.1 Computing Receiver Location Using GPS via Newton's Method

Example 6

Solution 6

4.7.2 Computing Receiver Location Using GPS via Minimization of a Performance Index

Example 7

Solution 7

4.8 Array of GPS Antennas

4.9 Gimbaled Inertial Navigation Systems

Example 8

Solution 8

4.10 Strap‐Down Inertial Navigation Systems

4.11 Dead Reckoning or Deduced Reckoning

Example 9

Solution 9

4.12 Inclinometer/Compass

Exercises

References

5 Application of Kalman Filtering. 5.1 Introduction

5.2 Estimating a Fixed Quantity Using Batch Processing

5.3 Estimating a Fixed Quantity Using Recursive Processing

Example 1

Solution 1

Example 2

Solution 2

5.4 Estimating the State of a Dynamic System Recursively

Example 3

Solution 3

Example 4

Solution 4

5.5 Estimating the State of a Nonlinear System via the Extended Kalman Filter

Example 5

Solution 5

Example 6

Solution 6

Exercises

References

6 Remote Sensing

6.1 Introduction

6.2 Camera‐Type Sensors

Example 1

Solution 1

Example 2

Solution 2

Example 3

Solution 3

6.3 Stereo Vision

Example 4

Solution 4

6.4 Radar Sensing: Synthetic Aperture Radar

6.5 Pointing of Range Sensor at Detected Object

6.6 Detection Sensor in Scanning Mode

Example 5

Solution 5

Exercises

References

7 Target Tracking Including Multiple Targets with Multiple Sensors

7.1 Introduction

7.2 Regions of Confidence for Sensors

7.3 Model of Target Location

Example 1

Solution 1

7.4 Inventory of Detected Targets

Exercises

References

8 Obstacle Mapping and Its Application to Robot Navigation. 8.1 Introduction

8.2 Sensors for Obstacle Detection and Geo‐Registration

Example 1

Solution 1

8.3 Dead Reckoning Navigation

Example 2

Solution 2

Example 3

Solution 3

8.4 Use of Previously Detected Obstacles for Navigation

Example 4

Solution 4

Example 5

Solution 5

Example 6

Solution 6

8.5 Simultaneous Corrections of Coordinates of Detected Obstacles and of the Robot

Example 7

Solution 7

Exercises

References

9 Operating a Robotic Manipulator. 9.1 Introduction

9.2 Forward Kinematic Equations

Example 1

Solution 1

Example 2

Solution 2

Example 3

Solution 3

Example 4

Solution 4

9.3 Path Specification in Joint Space

Example 5

Solution 5

Example 6

Solution 6

9.4 Inverse Kinematic Equations

Example 7

Solution 7

Example 8

Solution 8

Example 9

Solution 9

9.5 Path Specification in Cartesian Space

Example 10

Solution 10

Example 11

Solution 11

Example 12

Solution 12

9.6 Velocity Relationships

Example 13

Solution 13

Example 14

Solution 14

9.7 Forces and Torques

Exercises

References

10 Remote Sensing via UAVs. 10.1 Introduction

10.2 Mounting of Sensors

10.3 Resolution of Sensors

10.4 Precision of Vehicle Instrumentation

10.5 Overall Geo‐Registration Precision

Exercise

References

11 Dynamics Modeling of AUVs. 11.1 Introduction

11.2 Motivation

11.3 Full Dynamic Model

11.4 Hydrodynamic Model

11.5 Reduced‐Order Longitudinal Dynamics

11.6 Computation of Steady Gliding Path in the Longitudinal Plane

11.7 Scaling Analysis

11.8 Spiraling Dynamics

11.9 Computation of Spiral Path

Exercises

References

12 Control of AUVs. 12.1 Introduction

12.2 Longitudinal Gliding Stabilization

12.2.1 Longitudinal Dynamic Model Reduction. Review of the Longitudinal Model

System Reduction via Singular Perturbation

12.2.2 Passivity‐Based Controller Design

12.2.3 Simulation Results

12.3 Yaw Angle Regulation. 12.3.1 Problem Statement

12.3.2 Sliding Mode Controller Design

12.3.3 Simulation Results

12.4 Spiral Path Tracking. 12.4.1 Steady Spiral and Its Differential Geometric Parameters

12.4.2 Two Degree‐of‐Freedom Control Design

Feedforward Control via Inverse Mapping of Steady Spiral Motion

2‐DOF Control Design with a Feedback H∞ Controller

12.4.2.0.1 Linearized Model About a Steady Spiral Trajectory

12.4.2.0.2 H∞ Controller Design

12.4.3 Simulation Results

Exercises

References

Appendix A Demonstrations of Undergraduate Student Robotic Projects. A.1 Introduction

A.2 Demonstration of the GEONAVOD Robot

A.3 Demonstration of the Automatic Balancing Robotic Bicycle (ABRB)

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

r

s

t

u

y

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

IEEE Press 445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board Ekram Hossain, Editor in Chief

.....

(1.6e)

Here the sampling interval T must be chosen to be sufficiently small depending on the dynamics of the original differential equations, i.e., the behavior of the discrete‐time model must match up with that of the original system. For a linear system, this corresponds to selecting the sampling interval to be approximately one‐fifth of the smallest time constant of the system or smaller depending on the degree of precision required. For nonlinear systems, it may be necessary to determine this limiting size empirically. This discrete‐time model may be used for analysis, control design, estimator design, and simulation.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Mobile Robots
Подняться наверх