Chemical Analysis
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Francis Rouessac. Chemical Analysis
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Chemical ANALYSIS. Modern Instrumentation Methods and Techniques
Foreword
About the companion website
Introduction
Chapter 1 General Aspects of Chromatography. INTRODUCTION
Objectives
1.1 GENERAL CONCEPTS OF ANALYTICAL CHROMATOGRAPHY
1.2 THE CHROMATOGRAM
1.3 GAUSSIAN PEAKS AND REAL PEAKS
1.4 PLATE THEORY
1.5 NERNST PARTITION COEFFICIENT (K)
1.6 COLUMN EFFICIENCY. 1.6.1 Theoretical Efficiency (Number of Theoretical Plates)
1.6.2 Number of Effective Plates (Real Efficiency)
1.6.3 Plate Height
Reduced plate height
1.7 RETENTION PARAMETERS. 1.7.1 Retention Times
1.7.2 Retention Volume (or Elution Volume) VR
1.7.3 Hold‐up Volume (or Dead Volume) VM
1.7.4 Stationary Phase Volume
1.7.5 Retention (or Capacity) Factor k
An experimental approach to the retention factor k
1.8 SEPARATION (OR SELECTIVITY) FACTOR
1.9 RESOLUTION FACTOR
1.10 INFLUENCE OF SPEED OF THE MOBILE PHASE
1.10.1 Van Deemter Equation
Packing‐related term A = 2λ.dp
Gas (mobile phase) diffusion term B = 2γDG
Liquid (stationary phase) term C = CG + CL
1.10.2 Golay Equation
1.10.3 Knox Equation
1.11 OPTIMIZATION OF A CHROMATOGRAPHIC ANALYSIS
1.12 CLASSIFICATION OF CHROMATOGRAPHIC TECHNIQUES
1.12.1 Liquid Chromatography (LC)
Liquid/solid chromatography (LSC)
Liquid/liquid chromatography (LLC)
Ion chromatography (IC)
Size exclusion chromatography (SEC)
Affinity chromatography
1.12.2 Gas Chromatography (GC)
Gas/solid chromatography (GSC)
Gas/liquid chromatography (GLC)
1.12.3 Supercritical Fluid Chromatography (SFC)
Quantitative Analysis by Chromatography
1.13 PRINCIPLE AND BASIC RELATIONSHIP
1.14 CHROMATOGRAPHY SOFTWARE
1.15 EXTERNAL STANDARD METHOD
1.16 INTERNAL STANDARD METHOD
1.16.1 Calculation of the Relative Response Factors
1.16.2 Chromatogram of the Sample – Calculation of the Concentrations
1.17 INTERNAL NORMALIZATION METHOD
1.17.1 Calculation of the Relative Response Factors
1.17.2 Chromatogram of the Sample – Calculation of the Concentrations
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Note
Chapter 2 Gas Chromatography
Objectives
2.1 COMPONENTS OF A GC INSTALLATION
2.2 CARRIER GAS AND FLOW REGULATION
2.3 INJECTION CHAMBER. 2.3.1 Sample Introduction
Microsyringe and septum
Injection loops
2.3.2 Injectors
Split/splitless injector
Cold on‐column injection (COC)
Programmed temperature vaporization (PTV) injector
2.4 TEMPERATURE‐CONTROLLED OVEN
2.5 COLUMNS
2.5.1 Packed Columns
2.5.2 Capillary Columns (Open Tubular)
2.6 STATIONARY PHASES
2.6.1 Polysiloxanes
2.6.2 Polyethylene Glycols (PEG)
2.6.3 Ionic Liquids (IL)
2.6.4 Chiral Stationary Phases
Direct process
Indirect process
2.6.5 Solid Stationary Phases
2.7 MAIN DETECTORS
2.7.1 Universal or Near‐Universal Detectors. Flame ionization detector (FID)
Thermal conductivity detector (TCD)
Mass spectrometry detector (MSD)
2.7.2 Selective Detectors. Nitrogen phosphorus detector (NPD)
Electron capture detector (ECD)
Photo‐ionization detector (PID)
2.7.3 Detectors Providing Structural Data
2.8 OPTIMIZATION OF A SEPARATION
2.9 FAST CHROMATOGRAPHY AND MICROCHROMATOGRAPHY. 2.9.1 ‘Fast’ and ‘Ultra‐Fast’ Chromatography
2.9.2 Micro Gas Chromatography
2.10 RETENTION INDEXES AND STATIONARY PHASE CONSTANTS
2.10.1 Kovats Straight‐Line Relationship
2.10.2 Kovats Retention Index
2.10.3 McReynolds Constants for Stationary Phases
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 3 High‐Performance Liquid Chromatography
Objectives
3.1 DESIGN OF AN HPLC APPARATUS
3.2 PUMPS AND ELUTION GRADIENTS. 3.2.1 Eluent Pumps
3.2.2 Low‐Pressure and High‐Pressure Gradients
3.3 INJECTORS
3.4 COLUMNS
3.5 STATIONARY PHASES
3.5.1 Silica Gel, the Basic Material for Stationary Phases
3.5.2 Chemical Changes of Silica Gels
3.5.3 Stationary Phases Without Silica
3.5.4 Mixed Phases for Hydrophilic Interaction Chromatography
3.5.5 Stationary Phases for Chiral HPLC
3.6 MOBILE PHASES
3.7 SPECIFIC COLUMNS
3.7.1 Paired‐Ion Chromatography
3.7.2 Hydrophobic Interaction Chromatography (HIC)
3.7.3 Hydrophilic Interaction Chromatography (HILIC)
3.8 PRINCIPAL DETECTORS
3.8.1 Spectrophotometric Detectors
Monochromatic detection
Polychromatic detection
3.8.2 Spectrofluorometric Detector
3.8.3 Refractive Index Detector (RI Detector)
3.8.4 Evaporative Light Scattering Detector (ELSD)
3.8.5 Polarimetric Detector
3.8.6 Other Detectors
3.9 HPLC OPTIMIZATION
3.10 NEW DEVELOPMENTS IN HPLC
3.10.1 Reduction of Analysis Times
3.10.2 Reduction of Mobile Phase Volumes
3.10.3 Technology Related to HPLC Miniaturization
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 4 Ion Chromatography
Objectives
4.1 BASICS OF ION CHROMATOGRAPHY
4.2 STATIONARY PHASES FOR IEC
4.2.1 Synthesis Copolymers
4.2.2 Grafted Silicas
4.2.3 Polysaccharides
4.3 MOBILE PHASES
4.4 CONDUCTIVITY DETECTORS
4.5 WATER PEAK AND SYSTEM PEAK
4.5.1 Water Peak
4.5.2 System Peak
4.6 ION SUPPRESSORS OF THE ELECTROLYTE
4.6.1 Chemical Suppressor
4.6.2 Electrolytic suppressors
4.7 ION‐EXCLUSION CHROMATOGRAPHY
4.8 AMINO ACID ANALYSERS
4.9 PASSAGE FROM IEC TO ULTRA‐IEC
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 5 Thin‐Layer Chromatography
Objectives
5.1 PRINCIPLE OF THIN‐LAYER CHROMATOGRAPHY (TLC)
5.1.1 Sample Application
5.1.2 Developing the Plate
5.1.3 Post‐Chromatographic Revelation
5.1.4 Identification of Analytes through Mass Spectrometry
5.2 CHARACTERISTICS OF TLC
5.3 STATIONARY PHASES
5.4 SEPARATION AND RETENTION PARAMETERS
5.5 QUANTITATIVE TLC
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 6 Supercritical Fluid Chromatography
6.1 SUPERCRITICAL FLUIDS: A REVIEW
6.2 CARBON DIOXIDE AS A MOBILE PHASE
6.3 INSTRUMENTATION IN SFC
6.4 COMPARISON OF SFC WITH HPLC AND GC
6.5 SEPARATION OF ENANTIOMERS BY SFC
6.6 SFC IN CHROMATOGRAPHIC TECHNIQUES
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 7 Size‐Exclusion Chromatography
7.1 PRINCIPLE OF SEC
7.2 STATIONARY AND MOBILE PHASES
7.3 INSTRUMENTATION
7.4 APPLICATIONS OF SEC
Characterization of Macromolecules
7.5 POLYMER CHARACTERISTICS. 7.5.1 Conventional Calibration
7.5.2 Universal Calibration – Viscometric Detector
Viscometric detector
7.5.3 Triple Detection – Light‐Scattering Detector
Light‐scattering detector
7.6 FIELD FLOW FRACTIONATION (FFF)
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 8 High‐Performance Capillary Electrophoresis
8.1 PRINCIPLE OF CAPILLARY ELECTROPHORESIS
8.1.1 Zone Electrophoresis
8.1.2 Capillary Electrophoresis
8.2 MIGRATION OF ANALYTES IN THE CAPILLARY
8.2.1 Electrophoretic Mobility
8.2.2 Electroosmotic Flow (EOF)
8.2.3 Apparent Mobility
8.3 INSTRUMENTATION. 8.3.1 Different Modes of Injection
8.3.2 Detection Methods
8.4 ELECTROPHORETIC TECHNIQUES. 8.4.1 Capillary Zone Electrophoresis (CZE)
8.4.2 Micellar Electrokinetic Capillary Chromatography (MEKC)
8.4.3 Capillary Gel Electrophoresis (CGE)
8.4.4 Capillary Isoelectric Focusing (CIEF)
8.5 PERFORMANCE OF CE
8.5.1 Separation of Enantiomers
8.5.2 Separation Parameters
8.6 CAPILLARY ELECTROCHROMATOGRAPHY
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 9 Ultraviolet and Visible Absorption Spectroscopy
9.1 SPECTRAL REGION FROM UV‐VISIBLE TO VERY NEAR IR
9.2 THE ORIGIN OF ABSORPTIONS
9.3 ELECTRONIC TRANSITIONS OF ORGANIC COMPOUNDS
9.4 CHROMOPHORE GROUPS
9.5 SOLVENT EFFECTS
9.5.1 Hypsochromic Effect (Blue shift)
9.5.2 Bathochromic Effect (Red Shift)
9.5.3 Effect of pH
9.6 INSTRUMENTATION IN THE UV‐VISIBLE RANGE
9.6.1 Light Sources
9.6.2 Dispersive Systems
9.6.3 Detectors
9.7 CONFIGURATIONS OF UV/VIS SPECTROPHOTOMETERS
9.7.1 Single‐Beam, Single‐Channel Optical Spectrometers
9.7.2 Single‐Beam, Multichannel Spectrophotometers
9.7.3 Double‐Beam Optical Spectrometers (Sequential Type)
9.8 MEASUREMENT CELLS AND DEVICES
9.9 QUANTITATIVE ANALYSIS: LAWS OF MOLECULAR ABSORPTION. 9.9.1 Beer–Lambert Law
9.9.2 Additivity of Absorbances
9.10 METHODS IN QUANTITATIVE ANALYSIS. 9.10.1 Colorimetry
9.10.2 Analysis of a Single Analyte
9.10.3 Confirmatory Analysis
9.10.4 Multicomponent Analysis (MCA)
Basic algebraic method
Multiwavelength linear regression analysis (MLRA)
9.10.5 Deconvolution
9.11 METHODS OF BASELINE CORRECTION
9.11.1 Modelling by Polynomial Function Fitting
9.11.2 Morton–Stubbs Three‐Point Correction
9.12 RELATIVE ERROR DISTRIBUTION DUE TO INSTRUMENTS
9.13 DERIVATIVE SPECTROSCOPY
9.14 VISUAL COLORIMETRY BY TRANSMISSION OR REFLECTANCE
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 10 Infrared and Raman Spectroscopy
10.1 THE ORIGIN OF LIGHT ABSORPTION IN THE INFRARED REGION
10.2 PRESENTATION OF ABSORPTION IN THE INFRARED REGION
10.3 ROTATIONAL–VIBRATIONAL BANDS IN THE MID‐IR REGION
10.4 MECHANICAL MODEL FOR VIBRATIONAL INTERACTIONS BETWEEN ATOMS
10.5 REAL COMPOUNDS
10.6 CHARACTERISTIC BANDS FOR ORGANIC COMPOUNDS
10.7 INFRARED SPECTROMETERS AND ANALYSERS
10.7.1 Fourier Transform Infrared (FTIR) Spectrometers
10.7.2 Mid‐Infrared Analysers
10.8 SOURCES AND DETECTORS USED IN THE MID‐IR REGION. 10.8.1 Light Sources
10.8.2 Detectors
10.9 SAMPLE ANALYSIS TECHNIQUES
10.9.1 Optical Materials
10.9.2 Transmission Processes
10.9.3 Reflection Processes
Attenuated total reflection (ATR)
Specular reflection
Diffuse reflection
10.10 COUPLED TECHNIQUES. 10.10.1 Chemical Imaging Spectroscopy
10.10.2 GC/FTIR Coupling
10.11 COMPARISON OF SPECTRA
10.12 QUANTITATIVE ANALYSIS
10.12.1 Quantitative Analysis in the Mid‐Infrared Region
Near Infrared
10.13 ANALYSIS IN THE NEAR INFRARED REGION
10.13.1 Sequential, Spectrograph and FT‐NIR Instrument Types
10.13.2 NIRS Applications
Raman Spectroscopy
10.14 PRINCIPLE OF THE RAMAN EFFECT
10.15 INSTRUMENTATION
10.16 FIELDS OF APPLICATION
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 11 Fluorescence and Chemiluminescence Spectroscopy
11.1 ORIGIN OF FLUORESCENCE
11.1.1 Absorption and Relaxation Process
Absorption
Internal conversion
Fluorescence
Phosphorescence
11.1.2 Lifespan of Fluorescence
11.1.3 Stokes Shift
11.2 FLUORESCENT COMPOUNDS
11.3 RELATIONSHIP BETWEEN FLUORESCENCE AND CONCENTRATION
11.4 RAYLEIGH SCATTERING AND RAMAN SCATTERING
11.4.1 Rayleigh Scattering
11.4.2 Raman Scattering
11.5 INSTRUMENTATION
11.5.1 Ratio Fluorometers (Ratiometric Method)
11.5.2 Spectrofluorometers
11.5.3 Time‐Resolved Spectrofluorometers
11.6 SPECIFICITIES AND APPLICATIONS
11.7 CHEMILUMINESCENCE
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 12 X‐Ray Fluorescence Spectroscopy
12.1 BASIC PRINCIPLES
12.2 THE X‐RAY FLUORESCENCE SPECTRUM
12.3 EXCITATION SOURCES IN X‐RAY FLUORESCENCE
12.3.1 X‐Ray Generators
12.3.2 Radioisotope Sources of X‐rays
12.3.3 Other Sources of Excitation. α Emitters
Fast electrons
12.4 DETECTION OF X‐RAYS
12.5 DIFFERENT TYPES OF INSTRUMENTS
12.5.1 Energy‐Dispersive X‐Ray Fluorescence Instruments (ED‐XRF)
12.5.2 Wavelength‐Dispersive X‐Ray Fluorescence (WD‐XRF) Spectrometers
12.5.3 Filter Instruments (Fixed Single Channel)
12.6 SAMPLE PREPARATION
12.7 X‐RAY ABSORPTION – X‐RAY DENSITOMETRY
12.8 QUANTITATIVE ANALYSIS BY X‐RAY FLUORESCENCE
12.9 APPLICATIONS OF X‐RAY FLUORESCENCE
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 13 Atomic Absorption Spectroscopy
13.1 THE EFFECT OF TEMPERATURE ON AN ELEMENT
13.2 APPLICATIONS TO MODERN INSTRUMENTS
13.3 MEASUREMENTS BY AAS
13.4 BASIC INSTRUMENTATION FOR AAS
13.4.1 Sources
Hollow cathode lamps (HCL)
Electrodeless discharge lamps (EDL)
Xenon lamp
13.4.2 Thermal Devices for Obtaining Atomic Vapours. Atomization using a flame – burner and nebulizer
Thermoelectric atomization
Hydride generator
13.4.3 Monochromators
13.4.4 Detectors
13.5 PHYSICAL AND CHEMICAL DISTURBANCES
13.5.1 Spectral Interferences
Superimposition of lines
Superimposition of absorption and emission of the same element
Molecular absorptions
Diffusion of incident light
13.5.2 Chemical Interferences
13.5.3 Physical Interferences
13.6 CORRECTIONS OF NONSPECIFIC ABSORPTIONS
13.6.1 Background Correction Using a Deuterium Lamp
13.6.2 Background Noise Correction using the Zeeman Effect or a Pulsed Lamp
13.7 SENSITIVITY AND DETECTION LIMITS IN AAS
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 14 Atomic Emission Spectroscopy
14.1 OPTICAL EMISSION SPECTROSCOPY (OES)
14.2 PRINCIPLE OF ATOMIC EMISSION ANALYSIS
14.3 DISSOCIATION OF THE SAMPLE INTO ATOMS OR IONS
14.3.1 Gas Plasma Excitation
14.3.2 Excitation by Sparks or Laser
14.3.3 Excitation by Glow Discharge (GD)
14.4 DISPERSIVE SYSTEMS AND SPECTRAL LINES
14.5 SIMULTANEOUS AND SEQUENTIAL INSTRUMENTS
14.5.1 Fixed Optic Apparatus Containing a Polychromator
14.5.2 Fixed Optic, Echelle Grating Apparatus
14.5.3 Wavelength‐Scanning Instruments (Monochromator Type)
14.6 PERFORMANCE
14.6.1 Sensitivity Thresholds and Detection Limits of the Spectrometer
14.6.2 Resolving Power
14.6.3 Linear Dispersion and Bandwidth
14.7 APPLICATIONS OF ATOMIC EMISSION SPECTROMETRY
14.8 FLAME PHOTOMETRY
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 15 Nuclear Magnetic Resonance Spectroscopy
15.1 GENERAL INTRODUCTION
15.2 SPIN/MAGNETIC FIELD INTERACTION FOR A NUCLEUS
15.3 NUCLEI THAT CAN BE STUDIED BY NMR
15.4 BLOCH THEORY FOR I = ½
15.5 LARMOR FREQUENCY
15.6 SPECTRUM OBTAINED BY PULSED NMR
15.7 THE PROCESSES OF NUCLEAR RELAXATION
15.8 CHEMICAL SHIFT
15.9 MEASURING THE CHEMICAL SHIFT
15.10 SHIELDING AND DESHIELDING OF THE NUCLEI
15.11 FACTORS INFLUENCING CHEMICAL SHIFTS
15.11.1 Inductive Effects
15.11.2 Resonance Effects
15.11.3 Anisotropy and Induced Local Field Effects
15.11.3.1 Other Effects (Solvents, Hydrogen Bonding, and Matrix)
15.12 HYPERFINE STRUCTURE – SPIN–SPIN COUPLING
15.12.1 Typical Heteronuclear Coupling: Hydrogen Fluoride
15.12.2 Homonuclear Coupling – Weakly Coupled Systems
15.12.3 Homonuclear Coupling – Strongly Coupled Systems
AB system
15.13 SPIN DECOUPLING AND PARTICULAR PULSE SEQUENCES
15.14 13C NMR
15.15 TWO‐DIMENSIONAL NMR (2D‐NMR)
15.15.1 Homonuclear Correlation: 1H–1H COSY
15.15.2 Homonuclear Correlation: 1H–1H NOESY
15.15.3 Heteronuclear Correlation: 1H–13C HETCOR and HSQC
15.16 FLUORINE AND PHOSPHORUS NMR
15.17 NMR APPLICATIONS. 15.17.1 Structural Analysis
15.17.2 Quantitative NMR
15.17.3 Analysis via Time‐Resolved NMR (TR‐NMR)
15.17.4 Nuclear Magnetic Resonance Imagery
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 16 Mass Spectrometry
16.1 BASIC PRINCIPLES
16.1.1 Operating Principle of a Mass Spectrometer
16.1.2 Mass Spectrometer Performance Levels. Upper mass limit
Sensitivity
Resolving power
16.2 SAMPLE INTRODUCTION
16.2.1 Direct Injection
16.2.2 Sample Introduction in Coupled Techniques
16.2.3 Pumping Systems
16.3 MAIN VACUUM IONIZATION TECHNIQUES
16.3.1 Electron Ionization (EI)
16.3.2 Positive Chemical Ionization (CI)
16.3.3 Fast Atom Bombardment (FAB)
16.3.4 Matrix‐Assisted Laser Desorption Ionization (MALDI)
16.4 ATMOSPHERIC PRESSURE IONIZATION (API)
16.4.1 Spray Ionization
Electrospray ionization (ESI) or ion spray
Photoionization
Atmospheric pressure chemical ionization (APCI)
16.4.2 Plasma Ionization
16.4.3 Choice of Ionization Method
16.5 ANALYSERS. 16.5.1 Magnetic Analyser Spectrometer
16.5.2 Multiple Analysers
Ion accelerator
Electric sector
Magnetic analyser
16.5.3 Time‐of‐Flight Analysers (TOF)
16.5.4 Linear Quadrupole Analysers
16.5.5 Quadrupole Ion‐Trap Analysers
16.5.6 Ion Cyclotron Resonance Analysers (ICRMS)
16.5.7 Tandem mass spectrometry (MS/MS)
16.6 ION DETECTION
Some Applications of Mass Spectrometry
16.7 IDENTIFICATION BY MEANS OF A SPECTRAL LIBRARY
16.8 ANALYSIS OF THE ELEMENTAL COMPOSITION OF IONS. 16.8.1 Search for the Raw Formula
16.8.2 Method Based Upon Isotopic Abundances
16.8.3 Determination of Molecular Masses from Multicharged Ions
16.9 FRAGMENTATION OF ORGANIC IONS
16.9.1 Basic Rules
16.9.2 Fragmentation of an Ionized σ Bond
16.9.3 α Fragmentation
16.9.4 Fragmentations with Rearrangements
16.9.5 Metastable Ion Peaks
16.10 PROTEIN ANALYSIS
16.11 ICP‐MS COUPLING
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 17 Isotopic Analyses and Labelling Methods
17.1 PRINCIPLE OF ISOTOPIC DILUTION METHODOLOGIES
17.2 MEASUREMENT BY ADDING A RADIOISOTOPE. 17.2.1 Basic Method
17.2.2 Substoichiometric Method
17.2.3 Radioimmunoassays (RIA)
17.3 MEASURING BY ADDING A STABLE ISOTOPE
17.4 MEASURING ISOTOPE RATIOS FOR AN ELEMENT
17.5 MEASUREMENTS USING ENZYMATIC LABELLING
17.5.1 Antigens and Antibodies
17.5.2 Enzymatic‐Immunoassay (EIA) Method
Absorbance/concentration relationship
17.5.3 Other Immunoenzymatic Techniques
17.5.4 Advantages and Limitations of the ELISA Technique in Chemistry
17.5.5 Immunofluorescence in Homogeneous Phase by Fluorescent Polarization
17.6 NEUTRON ACTIVATION ANALYSIS (NAA) 17.6.1 Principle
17.6.2 Sources of Thermal Neutrons
17.6.3 Induced Activity – Irradiation Time
17.6.4 Measurement Principles and Applications
17.7 REVIEW OF RADIOACTIVE ISOTOPES
17.8 HALF‐LIFE τ, RADIOACTIVITY CONSTANT λ AND ACTIVITY A
17.9 RADIOACTIVE LABELLING OF ORGANIC MOLECULES
17.10 DETECTION AND COUNTING OF RADIOACTIVITY
17.11 SPECIAL PRECAUTIONS
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Note
Chapter 18 Specific Analysers
18.1 SPECIFIC ANALYSES
18.2 ELEMENTAL ORGANIC ANALYSIS
18.2.1 The Traditional Methods of Pregl and Simon
18.2.2 Current Elemental Organic CHNS–O Analysers
18.3 TOTAL NITROGEN ANALYSERS (TN)
18.4 TOTAL SULFUR ANALYSERS
18.5 TOTAL CARBON ANALYSERS (TC, TIC, AND TOC)
18.6 MERCURY ANALYSERS
18.7 ION MOBILITY SPECTROMETRY (IMS)
Field instruments
Laboratory instruments
18.8 KARL FISCHER VOLUMETRIC METHOD
18.8.1 Review of the Reactions Used
18.8.2 Preliminary Assay of the Karl Fischer Reagent. By direct titration
By back titration
18.8.3 Determination of the Water Content of a Sample. By direct titration
By back titration
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 19 Potentiometric and Ionometric Methods
19.1 MEASUREMENT CELLS
19.2 THE PH ELECTRODE
19.3 ION‐SELECTIVE ELECTRODES (ISE)
19.3.1 Crystalline Membrane
19.3.2 Polymer Membrane
19.3.3 Hydrophobic Membrane for Gases
19.4 QUANTIFICATIONS METHODS
19.4.1 Direct Ionometry – External Calibration
19.4.2 Multiple Addition Method
19.4.3 Potentiometric Titration
19.5 APPLICATIONS
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 20 Voltammetric Methods
20.1 THE VOLTAMMETRIC METHOD
20.2 THE DROPPING MERCURY ELECTRODE
20.3 DIRECT CURRENT POLAROGRAPHY (DCP)
20.4 DIFFUSION CURRENT
20.5 PULSE POLAROGRAPHY
20.5.1 Normal Pulse Polarography (NPP)
20.5.2 Differential Pulse Polarography (DPP)
20.5.3 Square Wave Polarography (SWP)
20.6 ALTERNATING CURRENT POLAROGRAPHY (ACP)
20.7 STRIPPING VOLTAMMETRY
20.8 COULOMETRIC MEASUREMENTS
20.9 COULOMETRIC TITRATION OF WATER CONTENT
20.10 VOLTAMMETRIC DETECTION IN HPLC AND HPCE
20.11 AMPEROMETRIC SENSORS
20.11.1 Clark Oxygen Probe
20.11.2 Redox Sensors for Gas or Vapours
20.11.3 Biosensors with Amperometric Detection
KEY POINTS OF THE CHAPTER
PROBLEMS
SOLUTIONS
Chapter 21 Sample Preparation
21.1 THE NEED FOR SAMPLE PRETREATMENT
21.2 SOLID PHASE EXTRACTION (SPE)
21.3 IMMUNO‐AFFINITY EXTRACTION
21.4 MICRO‐EXTRACTION PROCESSES. 21.4.1 Solid‐Phase Micro‐Extraction (SPME)
21.4.2 Liquid‐Phase Micro‐Extraction (LPME)
21.5 GAS EXTRACTION ON A CARTRIDGE OR A DISC
21.6 HEADSPACE
21.7 SUPERCRITICAL PHASE EXTRACTION (SPE)
21.8 MICROWAVE REACTORS
21.9 ON‐LINE ANALYSERS
KEY POINTS OF THE CHAPTER
Chapter 22 Basic Statistical Parameters
22.1 CENTRAL VALUE, ACCURACY, AND RELIABILITY OF A SET OF MEASUREMENTS
22.2 VARIANCE AND STANDARD DEVIATION
22.3 RANDOM OR INDETERMINATE ERRORS
22.4 CONFIDENCE INTERVAL OF THE MEAN
22.5 COMPARISON OF RESULTS – PARAMETRIC TESTS
22.5.1 Comparison of Two Variances, Fisher–Snedecor Law
22.5.2 Comparison of Two Experimental Means, and
22.5.3 Estimation of the Detection Limit of an Analyte
22.6 REJECTION CRITERIA USING THE Q QUOTIENT (OR DIXON TEST)
22.7 CALIBRATION CURVES
22.7.1 Simple Linear Regression
22.7.2 Multiple Linear Regression
22.8 ROBUST METHODS OR NONPARAMETRIC TESTS
22.9 OPTIMIZATION WITH THE ONE‐FACTOR‐AT‐A‐TIME (OFAT) METHOD
PROBLEMS
SOLUTIONS
Appendix Table of Some Useful Constants
Bibliography
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Third Edition
.....
This important relation can also be written:
(1.28)
.....