Product Maturity 1

Product Maturity 1
Автор книги: id книги: 2285297     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (155,74$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119902225 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Every parent is concerned when a child is slow to become a mature adult. This is also true for any product designer, regardless of their industry sector. For a product to be mature, it must have an expected level of reliability from the moment it is put into service, and must maintain this level throughout its industrial use.<br /><br />While there have been theoretical and practical advances in reliability from the 1960s to the end of the 1990s, to take into account the effect of maintenance, the maturity of a product is often only partially addressed.<br /><br /><i>Product Maturity 1</i> fills this gap as much as possible; a difficult exercise given that maturity is a transverse activity in the engineering sciences; it must be present throughout the lifecycle of a product.

Оглавление

Franck Bayle. Product Maturity 1

Table of Contents

List of Illustrations

Tables

Guide

Pages

Product Maturity 1. Theoretical Principles and Industrial Applications

Foreword by Laurent Denis

Foreword by Serge Zaninotti

Acknowledgements

Introduction

1. Reliability Review

1.1. Failure rate

1.2. Temperature effect

1.3. Effect of maintenance

1.4. MTBF

1.5. Nature of the reliability objective

2. Maturity. 2.1. Context

2.2. Normative context and its implications. 2.2.1. Quality standards

2.2.2. Quality management system and product quality

2.2.3. Product quality and dependability

2.2.4. Product dependability and maturity. 2.2.4.1. Components and indicators

2.2.4.2. Product maturity

2.2.4.3. PDCA and product maturity

2.2.5. Standards in various domains

2.2.6. Perspectives. 2.2.6.1. Opportunity

2.2.6.2. Building a quantified product maturity indicator

2.2.6.2.1. Process risk quantified indicator

2.2.6.2.2. Product maturity quantified indicator

2.2.6.2.3. Process maturity quantified indicator

2.3. Building of maturity

2.4. Confirmation of maturity

3. Derating Analysis. 3.1. Derating

3.2. Rules provided by the manufacturers of components. 3.2.1. CMS resistors

3.2.1.1. Dissipated power. 3.2.1.1.1. Steady state

3.2.1.1.2. Transient state

3.2.1.2. Applied voltage. 3.2.1.2.1. Steady state

3.2.1.2.2. Transient state

3.2.2. Capacitors

3.2.2.1. Ceramic capacitors

3.2.2.2. Tantalum capacitors

3.2.2.2.1. Direct voltage

3.2.2.2.2. Dissipated power

3.2.2.3. Electrolytic capacitors

3.2.3. Magnetic circuits

3.2.4. Fuses

3.2.5. Resonators

3.2.6. Oscillators

3.2.7. Photocouplers

3.2.8. Diodes

3.2.9. Zener diodes

3.2.10. Tranzorb diodes

3.2.10.1. Maximum pulse power

3.2.10.2. Steady-state power

3.2.10.3. Pulse power

3.2.11. Low power bipolar transistors

3.2.12. Power bipolar transistors

3.2.13. Low power MOSFET transistors

3.2.14. High power MOSFET transistors

3.2.15. Integrated circuits

3.3. Reference-based approach

3.4. Creation of derating rules

3.4.1. Rules for constant temperature

3.4.2. Rule for voltage

3.5. Summary

4. Components with Limited Service Life

4.1. RDF 2000 guide. 4.1.1. Power transistor

4.1.2. Photocouplers

4.1.3. Switch or push button

4.1.4. Connectors

4.2. FIDES 2009 guide

4.2.1. Fans

4.2.2. Batteries

4.3. Manufacturer’s data

4.3.1. Wet electrolytic capacitor

4.3.2. Connectors

4.3.3. Relays

4.3.4. Optocouplers

4.3.5. Batteries

4.3.6. Fans

4.3.7. Flash memories

4.3.8. Potentiometers

4.3.8.1. Trimmers

4.3.8.2. Rotary potentiometers

4.3.9. Quartz oscillators

4.3.10. Voltage references

4.4. Summary of components with limited service life

5. Analysis of Product Performances

5.1. Analyses during the design stage. 5.1.1. Worst-case analysis

5.1.2. Quadratic analysis

5.1.3. Monte-Carlo analysis

5.1.3.1. Careful approach

5.1.3.2. Realistic approach

5.1.3.3. Example of the resistive bridge

5.1.4. Numerical simulations

5.2. Analyses during the manufacturing stage

6. Aggravated Tests

6.1. Definition

6.2. Objectives of aggravated tests

6.3. Principles of aggravated tests

6.3.1. Choice of physical constraints

6.3.2. Principle of HALT

6.3.3. Specific or additional constraints

6.3.4. Number of required samples

6.3.5. Operational test, diagnosis and identification of weaknesses

6.3.6. Monitoring specification

6.3.7. Instrumentation

6.3.8. Root cause analysis, corrective actions and breakdown management

6.3.8.1. Failure analyses

6.4. Robustness. 6.4.1. Estimation of robustness margins

6.4.2. Sufficient margins

6.4.2.1. The reliability objective is the probability to fulfill the mission

6.4.2.2. The reliability objective is an MTBF

7. Burn-In Test

7.1. Link between HALT and HASS tests

7.2. POS1 test

7.2.1. Miner’s approach

7.2.2. Approach according to the physical laws of failure

7.2.3. Zero-failure reliability proof approach

7.3. POS2 test

7.3.1. Influence of parameter Q

7.3.2. Influence of parameter p

7.3.3. Summary of the POS2 test

7.4. HASS cycle

7.4.1. Precipitation stage

7.4.2. Detection stage

7.5. Should burn-in tests be systematically conducted?

7.5.1. Constraints extrinsic to the equipment manufacturer

7.5.2. Constraints intrinsic to the equipment manufacturer

7.5.3. Decision criteria

7.6. Test coverage

7.7. Economic aspect of burn-in

7.7.1. No burn-in test is conducted

7.7.2. Burn-in test is conducted

8. Run-In. 8.1. Run-in principle

8.2. Stabilization

8.2.1. Proposed principle

8.2.2. Drift acceleration law

8.2.3. Choice of the drift model

8.2.4. Equivalent level of physical contribution

8.3. Expression of the corresponding degradation

8.4. Optimization of the stabilization time

8.5. Estimation of a prediction interval of the degradation

8.5.1. Principle of the stabilization method

List of Notations

List of Definitions. A

B

C

D

E

F

L

M

N

O

P

Q

R

S

T

List of Acronyms

References

Index. A, B

C, D

E, F

H, I

J, L

M, N

O, P

Q, R

S, T

V, W

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Reliability of Multiphysical Systems Set

.....

In this case, we can return to an exponential distribution because, for these values of the survival function, it is conservative, with respect to a Weibull distribution, whose shape parameter is greater than 1. Indeed, from a mathematical perspective, the ratio of the two survival functions can be calculated as follows:

with β > 1 and Tm = mission duration.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Product Maturity 1
Подняться наверх