Dynamic Spectrum Access Decisions

Dynamic Spectrum Access Decisions
Автор книги: id книги: 1887860     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14679,2 руб.     (146,8$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119573791 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Optimize your  dynamic spectrum access approach using the latest applications and techniques   Dynamic Spectrum Access Decisions: Local, Distributed, Centralized and Hybrid Designs  prepares engineers to build optimum communications systems by describing at the outset what type of spectrum sensing capabilities are needed. Meant for anyone who has a basic understanding of wireless communications and networks and an interest in the physical and MAC layers of communication systems, this book has a tremendous range of civilian and military applications.  Dynamic Spectrum Access Decisions  provides fulsome discussions of cognitive radios and networks, but also DSA technologies that operate outside the context of cognitive radios. DSA has applications in:  · Licensed spectrum bands  · Unlicensed spectrum bands  · Civilian communications  · Military communications  Consisting of a set of techniques derived from network information theory and game theory, DSA improves the performance of communications networks. This book addresses advanced topics in this area and assumes basic knowledge of wireless communications.

Оглавление

George F. Elmasry. Dynamic Spectrum Access Decisions

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Dynamic Spectrum Access Decisions. Local, Distributed, Centralized, and Hybrid Designs

Copyright

About the Author

Preface

List of Acronyms

About the Companion Website

Chapter 1 Introduction

1.1 Summary of DSA Decision‐making Processes

1.2 The Hierarchy of DSA Decision Making

1.3 The Impact of DSA Control Traffic

1.4 The Involvedness of DSA Decision Making

1.5 The Pitfalls of DSA Decision Making

1.6 Concluding Remarks

Exercises

Bibliography

Notes

Chapter 2 Spectrum Sensing Techniques

2.1 Multidimensional Spectrum Sensing and Sharing

2.2 Time, Frequency, and Power Spectrum Sensing

2.3 Energy Detection Sensing

2.3.1 Energy Detection Sensing of a Communications Signal (Same‐channel in‐band Sensing)

2.3.2 Time Domain Energy Detection

2.3.3 Frequency Domain Energy Detection

2.4 Signal Characteristics Spectrum Sensing

2.4.1 Matched Filter Based Spectrum Sensing

2.4.2 Autocorrelation Based Spectrum Sensing

2.4.3 Spreading Code Spectrum Sensing

2.4.4 Frequency Hopping Spectrum Sensing

2.4.5 Orthogonality Based Spectrum Sensing

2.4.6 Waveform Based Spectrum Sensing

2.4.7 Cyclostationarity Based Spectrum Sensing

2.5 Euclidean Space Based Detection

2.5.1 Geographical Space Detection

2.5.2 Angle of the RF Beam Detection

2.6 Other Sensing Techniques

2.7 Concluding Remarks

Exercises

Appendix 2A: The Difference Between Signal Power and Signal Energy

Bibliography

Notes

Chapter 3 Receiver Operating Characteristics and Decision Fusion

3.1 Basic ROC Model Adaptation for DSA

Example: Evaluation Metrics and ROC Design for Different Applications

3.2 Adapting the ROC Model for Same‐channel in‐band Sensing

3.3 Decision Fusion

3.3.1 Local Decision Fusion

3.3.1.1 Local Decision Fusion for Same‐channel in‐band Sensing

3.3.1.2 Local Decision Fusion with Directional Energy Detection

3.3.2 Distributed and Centralized Decision Fusion

3.4 Concluding Remarks

3.5 Exercises

Appendix 3A: Basic Principles of the ROC Model

The ROC Curve as Connecting Points

3A.2 The ROC Curve Classifications

Bibliography

Notes

Chapter 4 Designing a Hybrid DSA System

4.1 Reasons for Using Hybrid DSA Design Approaches

Example

4.2 Decision Fusion Cases

4.3 The Role of Other Cognitive Processes

4.4 How Far can Distributed Cooperative DSA Design go?

4.5 Using a Centralized DSA Arbitrator

4.6 Concluding Remarks

Exercises

Bibliography

Notes

Chapter 5 DSA as a Set of Cloud Services

5.1 DSA Services in the Hierarchy of Heterogeneous Networks

5.2 The Generic DSA Cognitive Engine Skeleton

5.2.1 The Main Thread in the Central Arbitrator DSA Cognitive Engine

5.2.2 A Critical Thread in the Gateway DSA Cognitive Engine

5.2.3 The Gateway Cognitive Engine Propagation of Fused Information to the Central Arbitrator Thread

5.3 DSA Cloud Services Metrics

5.3.1 DSA Cloud Services Metrics Model

5.3.2 DSA Cloud Services Metrology

5.3.3 Examples of DSA Cloud Services Metrics

5.3.3.1 Response Time

5.3.3.2 Hidden Node

5.3.3.3 Meeting Traffic Demand

5.3.3.4 Rippling

5.3.3.5 Co‐site Interference Impact

5.3.3.6 Other Metrics

5.3.3.7 Generalizing a Metric Description

5.4 Concluding Remarks

Exercises

Bibliography

Notes

Chapter 6 Dynamic Spectrum Management for Cellular 5G Systems

6.1 Basic Concepts of 5G

6.2 Spatial Modeling and the Impact of 5G Dense Cell Deployment

6.2.1 Spatial Modeling and SIR

6.2.2 SIR and Connectivity

6.2.3 General Case Connectivity and Coverage

6.2.3.1 Transmission Capacity

6.2.3.2 5G Cell Overlay

6.3 Stages of 5G SI Cancellation

6.4 5G and Cooperative Spectrum Sensing

6.4.1 The Macrocell as the Main Fusion Center

6.4.2 Spectrum Agents Operate Autonomously

6.4.3 The End User as its Own Arbitrator

6.5 Power Control, Orthogonality, and 5G Spectrum Utilization

6.6 The Role of the Cell and End‐User Devices in 5G DSM

6.7 Concluding Remarks

Exercises

Bibliography

Notes

Chapter 7 DSA and 5G Adaptation to Military Communications

7.1 Multilayer Security Enhancements of 5G

7.2 MIMO Design Considerations

7.2.1 The Use of MU MIMO

7.2.2 The Use of MIMO Channel Training Symbols for LPD/LPI

7.2.3 The Use of MIMO Channel Feedback Mechanism for LPD/LPI

7.2.4 The Use of MU MIMO for Multipath Hopping

7.2.5 The Use of MU MIMO to Avoid Eavesdroppers

7.2.6 The Use of MU MIMO to Discover Jammers

7.2.7 Beamforming and LPI/LPD

7.3 Multifaceted Optimization of MU MIMO Channels in Military Applications

7.4 Other Security Approaches

7.4.1 Bottom‐up Deployment Approach

7.4.2 Switching a Network to an Antijamming Waveform

7.5 Concluding Remarks

Exercises

Bibliography

Notes

Chapter 8 DSA and Co‐site Interference Mitigation

8.1 Power Spectral Density Lobes

8.2 Co‐site Interference between Frequencies in Different Bands

8.3 Co‐site Interference From Unlicensed Frequency Blocks

8.4 Adapting the Platform's Co‐site Interference Analysis Process for DSA Services

8.5 Adapting the External System's Co‐site Interference Analysis for DSA

8.6 Considering the Intersystem Co‐site Interference Impact

8.7 Using Lookup Tables as Weighted Metrics

8.8 Co‐site Interference Incorporation in Decision Fusion and Fine‐Tuning of Co‐site Impact

8.9 DSA System co‐site Interference Impact on External Systems

8.10 The Locations Where Co‐site Interference Lookup Tables and Metrics are Utilized

8.11 Concluding Remarks

Exercises

Bibliography

Notes

Chapter 9 Overview

9.1 Electromagnetic Spectrum

9.1.1 Constrained Environment

9.1.2 Spectrum Dependent Devices

9.2 Definition

9.3 Objective

9.4 Core Functions

9.5 Army Spectrum Management Operations Process

9.5.1 Planning

9.5.2 Coordinating

9.5.3 Operating

Chapter 10 Tactical Staff Organization and Planning

10.1 Spectrum Management Operations for Corps and Below

10.1.1 Corps Spectrum Operations

10.2 Division, Brigade and Battalion Spectrum Operations

10.3 Spectrum Managers Assigned to Cyber Electromagnetic Activity Working Group

10.4 Cyber Electromagnetic Activities Element

10.4.1 Electronic Warfare Staff

10.4.2 Spectrum Manager

10.5 Tips for Spectrum Managers

10.6 The Military Decisionmaking Process

10.7 Support to the MDMP Steps

10.8 The Common Operational Picture

Chapter 11 Support to the Warfighting Functions

11.1 Movement and Maneuver

11.2 Intelligence

11.3 Fires

11.4 Sustainment

11.5 Mission Command

11.6 Protection

Chapter 12 Joint Task Force Considerations

12.1 Inputs and Products of Joint Task Force Spectrum Managers

12.2 Joint Frequency Management Office

12.3 Joint Spectrum Management Element

12.4 Spectrum Management Support to Defense Support of Civil Authorities

Chapter 13 Spectrum Management Operations Tools

13.1 Tool Considerations

13.1.1 Spectrum Situational Awareness System

13.1.2 Global Electromagnetic Spectrum Information System

13.1.3 Coalition Joint Spectrum Management Planning Tool

13.1.4 Systems Planning, Engineering, and Evaluation Device

13.1.5 Afloat Electromagnetic Spectrum Operations Program

13.1.6 Spectrum XXI

13.1.6.1 Spectrum XXI Key Components

13.1.7 Host Nation Spectrum Worldwide Database Online

13.1.8 Automated Communications Engineering Software and Joint Automated Communications Engineering Software

13.1.8.1 General Purpose Module

13.1.8.2 Area Common User System Module

13.1.8.3 Resource Manager Module

13.1.8.4 Master Net List Module

13.1.8.5 SOI Module

13.1.8.6 Combat Net Radio Module

13.1.8.7 ARC‐220 Module

13.1.8.8 Satellite Communications Module

13.2 Joint Spectrum Interference Resolution Online

13.3 Joint Spectrum Data Repository

Appendix A Spectrum Management Task List

A.1 Tasks

A.1.1 Plan the Use of the Electromagnetic Spectrum for all Spectrum Dependent Devices

A.1.2 Conduct Electromagnetic Interference Analysis

A.1.3 Assign Frequencies Within the Operational Parameters of SDD and Available Resources

A.1.4 Obtain Requests and Provide Electromagnetic Spectrum Resources to Requesting Unit

A.1.5 Provide Electromagnetic Operational Environment Information in Either a Networked or Stand‐Alone Mode

A.1.6 Perform Modeling and Simulation of the emoe Via User Selected Data Fields of the Impact of the emoe on Projected Spectrum Plans

A.1.7 Monitor and Use Spectrum Common Operational Picture Information in Support of Unified Land Operations

A.1.8 Prioritize Spectrum Use Based on Commanders Guidance

A.1.9 Utilize Electronic Warfare Reprogramming During the Nomination, Assignment, and Deconfliction Processes

A.1.10 Import Satellite Access Authorization

A.1.11 Generate and Distribute SOI and JCEOI

A.1.12 Create, Import, Export, Edit, Delete, Display, and Distribute the Joint Restricted Frequency List

A.1.13 Access and Use Spectrum Operations Technical Data

A.1.14 Manage, Store, and Archive Spectrum Use Data (Frequency Management Work History) and Utilize Host Nation Comments in the Spectrum Nomination and Assignment Process

A.2 Sub‐task List

A.3 SMO to EW Flow Charts

Appendix B Capabilities and Compatibility between Tools

B.1 Capabilities and Compatibility

B.1.1 Compatibility between SMO Tools

B.1.2 SMO Tool Capabilities

Appendix C Spectrum Physics

C.1 Radio Frequency

C.1.1 Harmonics and Intermodulation Products

C.1.2 Transmission, Propagation and Reception

Appendix D Spectrum Management Lifecycle

D.1 Spectrum Management Lifecycle

D.1.1 Step 1. Define Command Specific Policy and Guidance

D.1.2 Step 2. Gather Requirements

D.1.3 Step 3. Develop the Spectrum Requirements Summary

D.1.4 Step 4. Define the EMOE

D.1.5 Step 5. Obtain Spectrum Resources

D.1.6 Step 6. Develop the Spectrum Management Plan

D.1.7 Step 7. Nominate and Assign Frequencies

D.1.8 Step 8. Generate a Communications‐Electronic Operating Instructions

D.1.8.1 Distribution and Development

D.1.8.2 Call Words, Call Signs, Suffixes and Expanders

D.1.8.3 Security Classification

D.1.9 Step 9. Develop Joint Restricted Frequency List

D.1.10 Step 10. Perform Electronic Warfare Deconfliction

D.1.11 Step 11. Resolve Interference

D.1.12 Step 12. Report Interference

D.1.12.1 Joint Spectrum Interference Report

D.1.12.2 Types of Jamming Signals

D.1.12.3 Recognizing Jamming

D.1.12.4 Overcoming Jamming

D.1.12.5 Improve the Signal‐to‐Jamming Ratio

Appendix E Military Time Zone Designators

E.1 Overview

E.1.1 Military Time Zone Considerations

References. Required Publications

Related Publications

Joint Publications

Army Publications

Other Publications

Prescribed Forms

Referenced Forms

Websites

Chapter 14 IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management. 14.1 Overview. 14.1.1 Scope

14.1.2 Purpose

14.2 Acronyms and Abbreviations

14.3 Definitions of Advanced Radio System Concepts. 14.3.1 Adaptive Radio

14.3.2 Cognitive Radio

14.3.3 Hardware‐defined Radio

14.3.4 Hardware Radio

14.3.5 Intelligent Radio

14.3.6 Policy‐based Radio

14.3.7 Reconfigurable Radio

14.3.8 Software‐controlled Radio

14.3.9 Software‐defined Radio

14.4 Definitions of Radio System Functional Capabilities. 14.4.1 Adaptive Modulation

14.4.2 Cognition

14.4.3 Cognitive Control Mechanism

14.4.4 Cognitive Process

14.4.5 Cognitive Radio System

14.4.6 Frequency Agility

14.4.7 Geolocation Capability

14.4.8 Location Awareness

14.4.9 Policy‐based Control Mechanism

14.4.10 Policy Conformance Reasoner

14.4.11 Policy Enforcer

14.4.12 Radio Awareness

14.4.13 Software Controlled

14.4.14 Software Defined

14.4.15 System Strategy Reasoning Capability

14.4.16 Transmit Power Control

14.5 Definitions of Decision‐making and Control Concepts that Support Advanced Radio System Technologies. 14.5.1 Coexistence Policy

14.5.2 DSA Policy Language

14.5.3 Formal Policy

14.5.4 Meta‐policy

14.5.5 Model‐theoretic Computational Semantics

14.5.6 Policy Language

14.5.7 Reasoner

14.6 Definitions of Network Technologies that Support Advanced Radio System Technologies. 14.6.1 Cognitive Radio Network

14.6.2 Dynamic Spectrum Access Networks

14.6.3 Reconfigurable Networks

14.7 Spectrum Management Definitions. 14.7.1 Allocation

14.7.2 Clear Channel Assessment Function

14.7.3 Coexistence

14.7.4 Coexistence Mechanism

14.7.5 Cognitive Interference Avoidance

14.7.6 Collaboration

14.7.7 Collaborative Decoding

14.7.8 Cooperation

14.7.9 Data Archive

14.7.10 Distributed Radio Resource Usage Optimization

14.7.11 Distributed Sensing

14.7.12 Dynamic Channel Assignment

14.7.13 Dynamic Frequency Selection

14.7.14 Dynamic Frequency Sharing

14.7.15 Dynamic Spectrum Access

14.7.16 Dynamic Spectrum Assignment

14.7.17 Dynamic Spectrum Management

14.7.18 Electromagnetic Compatibility

14.7.19 Frequency Hopping

14.7.20 Frequency Sharing

14.7.21 Hierarchical Spectrum Access

14.7.22 Horizontal Spectrum Sharing

14.7.23 Interference

14.7.24 Opportunistic Spectrum Access

14.7.25 Opportunistic Spectrum Management

14.7.26 Policy Authority

14.7.27 Policy Traceability

14.7.28 Radio Environment Map

14.7.29 RF Environment Map

14.7.30 Sensing Control Information

14.7.31 Sensing Information

14.7.32 Sensor

14.7.33 Spectral Opportunity

14.7.34 Spectrum Access

14.7.35 Spectrum Broker

14.7.36 Spectrum Efficiency

14.7.37 Spectrum Etiquette

14.7.38 Spectrum Leasing

14.7.39 Spectrum Management

14.7.40 Spectrum Overlay

14.7.41 Spectrum Owner

14.7.42 Spectrum Pooling

14.7.43 Spectrum Sensing

14.7.44 Cooperative Spectrum Sensing

14.7.45 Collaborative Spectrum Sensing

14.7.46 Spectrum Sharing

14.7.47 Spectrum Underlay

14.7.48 Spectrum Utilization

14.7.49 Spectrum Utilization Efficiency

14.7.50 Vertical Spectrum Sharing

14.7.51 White Space

14.7.52 White Space Database

14.7.53 White Space Frequency Band

14.7.54 White Space Spectrum Band See: White Space Frequency Band

14.8 Glossary of Ancillary Terminology. 14.8.1 Air Interface

14.8.2 Digital Policy

14.8.3 Domain

14.8.4 Interference Temperature

14.8.5 Interoperability

14.8.6 Machine Learning

14.8.7 Machine‐understandable Policies

14.8.8 Ontology

14.8.9 Policy

14.8.10 Quality of Service

14.8.11 Radio

14.8.12 Radio Node

14.8.13 Radio Spectrum

14.8.14 Receiver

14.8.15 Software

14.8.16 Transmitter

14.8.17 Waveform

14.8.18 Waveform Processing

Annex 14A Implications of Advanced Radio System Technologies for Spectrum

14A.1 Regulatory Issues to Which Advanced Radio System Technologies and New Spectrum‐sharing Concepts are Applicable

14A.2 New Spectrum Management Concepts

14A.3 Frequency Band Consideration in the Application of Advanced Radio System Technologies

14A.4 Radio Network Control Considerations in the Application of Advanced Radio System Technologies

14A.5 Progressing Toward Regulatory Harmonization

Annex 14B Explanatory Notes on Advanced Radio System Technologies and Advanced Spectrum Management Concepts. 14B.1 Relationship of Terms

14B.2 Explanatory Note on Software‐defined Radio

14B.3 Explanatory Note on Cognitive Control and Cognitive Functionality

14B.4 Explanatory Note on Adaptive Radios that Employ a Policy‐based Control Mechanism

14B.5 Explanatory Note on Dynamic Spectrum Access

14B.6 Explanatory Note on Collaborative Spectrum Management

14B.7 Explanatory Note on Spectrum Efficiency

14B.8 Definition of Informative Terms. 14B.8.1 Cognitive Engine

14B.8.2 Primary Users

14B.8.3 Secondary Users

14B.8.4 Knowledge

14B.8.5 Radio Access Technology (RAT)

14B.8.6 Radio Access Network (RAN)

14B.8.7 Reasoning

14B.8.8 Waveform Specification

14B.8.9 Wireless Sensor Networks

14B.9 Explanatory Notes on Wireless Virtualization. 14B.9.1 Introduction

14B.9.2 Defining Entities in Wireless Virtualization

14B.9.3 NFV Features and Topics that Arise in Communication Including Wireless Networks

Annex 14C (informative) List of Deleted Terms from the Previous Versions of IEEE Std 1901.1

14C.1 Composite Network

14C.2 Collaborative Spectrum Usage

14C.3 Communications Mode

14C.4 Prioritized Spectrum Access

14C.5 Interference Event

14C.6 Negotiated Spectrum Access

14C.7 Noncollaborative Coexistence Mechanism

14C.8 Performance Metric

14C.9 Precedence Assertion

14C.10 Protocol Agility

14C.11 Quality‐of‐service Management

14C.12 Radio Quiet Zone

14C.13 Restricted Dynamic Spectrum Access Etiquette

14C.14 Spatial Awareness

14C.15 Spectrum Access Behavior

14C.16 Spectrum Availability Beacon

14C.17 Unrestricted Dynamic Spectrum Access Etiquette

14C.18 Wireless Network Efficiency

14C.19 Firmware

14C.20 Quality of Spectral Detection

14C.21 Vision and Roadmap for Application of Advanced Radio System Technologies

14C.22 Spectrally Aware Networking

Annex 14D (informative) Bibliography

Notes

Chapter 15 IEEE Recommended Practice for the Analysis of In‐Band and Adjacent Band Interference and Coexistence Between Radio Systems

15.1 Overview. 15.1.1 Relationship to Traditional Spectrum Management

15.1.2 Introduction to this Recommended Practice

15.1.3 Scope. 15.1.3.1 Formal Scope2

15.1.3.2 Discussion of Scope

15.1.4 Purpose. 15.1.4.1 Formal Purpose4

15.1.4.2 Discussion of Purpose

15.1.5 Rationale

15.2 Normative References

15.3 Definitions, Acronyms, And Abbreviations. 15.3.1 Definitions

15.3.1.1 Adaptive Radio

15.3.1.2 Co‐channel

15.3.1.3 Coexistence

15.3.1.4 Cognitive Radio/Cognitive Radio Node

15.3.1.5 Cooperative (Device or System)

15.3.1.6 Dynamic Spectrum Management

15.3.1.7 Electromagnetic Compatibility

15.3.1.8 Interference Event

15.3.1.9 Noncooperative (Device or System)

15.3.1.10 Recipient Device

15.3.1.11 Recipient System

15.3.1.12 Software‐controlled Radio

15.3.1.13 Software‐defined Radio (SDR)

15.3.1.14 Source Device

15.3.1.15 Source System

15.3.1.16 Spectrum Utilization

15.3.2 Acronyms and Abbreviations

15.4 Key Concepts. 15.4.1 Interference and Coexistence Analysis

15.4.2 Measurement Event

15.4.3 Interference Event

15.4.4 Harmful Interference

15.4.5 Physical and Logical Domains

15.5 Structure of Analysis and Report. 15.5.1 Structure for Analysis

15.5.1.1 Scenario Definition

15.5.1.2 Establishment of Interference and Coexistence Criteria

15.5.1.3 Selection of Relevant Variables or Behaviors

15.5.1.4 Modeling, Analysis, Measurement, and Testing

15.5.2 Process Flow—divergence, Reduction, and Convergence

15.5.3 Report Structure. 15.5.3.1 Quick Reference Guide

15.5.3.2 Introductory Material

15.6 Scenario Definition. 15.6.1 General

15.6.2 Study Question

15.6.3 Benefits and Impacts of Proposal

15.6.4 Scenario(s) and Usage Model

15.6.4.1 Frequency Relationships

15.6.4.2 Usage Model

15.6.4.3 Characteristics of Usage Model

Spatial and Power Characteristics

Temporal Characteristics

Frequency Characteristics

Other Orthogonal Variables

15.6.4.4 System Relationships. Systems Considered

15.6.4.4.1.1 Categories of System Cooperation

15.6.4.4.1.2 Non‐radio Equipment and Non‐antenna Coupling

Protection Distance

Geographic Area for Analysis

Impact of Interference

Interference Mitigation

Baseline

15.6.5 Case(s) for Analysis

15.7 Criteria for Interference. 15.7.1 General

15.7.2 Interference Characteristics

15.7.2.1 Impacted Level

15.7.3 Measurement Event

15.7.4 Interference Event

15.7.5 Harmful Interference Criteria

15.8 Variables. 15.8.1 General

15.8.1.1 Relationship with Advanced Radio Technologies

15.8.1.2 Analytical Framework for Selecting Relevant Variables

15.8.2 Variable Selection

15.9 Analysis—modeling, Simulation, Measurement, and Testing. 15.9.1 General

15.9.2 Selection of the Analysis Approach, Tools, and Techniques

15.9.3 Matrix Reduction

15.9.4 Performing the Analysis

15.9.5 Quantification of Benefits and Interference

15.9.6 Analysis of Mitigation Options

15.9.7 Analysis Uncertainty

15.9.7.1 Uncertainty Distribution

15.9.7.2 Reduction of Uncertainty

15.10 Conclusions and Summary. 15.10.1 Benefits and Impacts

15.10.2 Summation

Annex 15A (informative) Propagation Modeling. 15A.1 General

15A.2 Scale

15A.3 Terrain and Environment

15A.3.1 Terrain‐based Models

15A.3.2 Advanced Refractive Effects Prediction System (AREPS)

15A.3.3 Okumura‐Hata Propagation Model

15A.3.4 JTC Path Loss Model

15A.4 Relationship of Outage Probability and Radio Coverage

15A.5 Signal

15A.5.1 Frequency

15A.5.2 Bandwidth

15A.6 Mobility

Annex 15B (informative) Audio interference. 15B.1 General

15B.2 Relative Amplitude of Audio RF Interference

15B.3 Absolute Amplitude of Audio RF Interference

15B.4 Model of Audio RF Interference

15B.5 Other Considerations for Audio Interference

Annex 15C (informative) Spectrum Utilization Efficiency. 15C.1 Spectrum Utilization Efficiency

15C.1.1 ITU‐R Method 1 for Calculation of SUE

15C.1.2 ITU‐R Method 2 for Calculation of SUE

15C.2 Relative Spectrum Efficiency

Annex 15D (informative) Sample Analysis—selection of Listen‐before‐talk Threshold. 15D.1 Executive Summary

15D.2 Findings

15D.3 Scenario Definition. 15D.3.1 Study Question

15D.3.2 Benefits and Impacts of Proposal

15D.3.3 Scenario(s)

15D.3.3.1 Frequency Relationships

15D.3.3.2 Usage Model

15D.3.3.3 Characteristics of Usage Models

Spatial and Power Limits

Temporal Limits

Frequency Characteristics

Other Orthogonal Variables

15D.3.3.4 System Relationships. Systems Considered

Protection Distance

Geographic Area for Analysis

Impact of Interference

Interference Mitigation

Baseline

15D.3.4 Case(s) for Analysis

15D.4 Criteria for Interference. 15D.4.1 Interference Characteristics

15D.4.1.1 Impacted Level

15D.4.2 Measurement Event

15D.4.3 Interference Event

15D.4.4 Harmful Interference Criteria

15D.5 Variables

15D.6 Analysis—modeling, Simulation, Measurement, and Testing. 15D.6.1 Selection of the Analysis Approach, Tools, and Techniques

15D.6.2 Matrix Reduction

15D.6.3 Performing the Analysis

15D.6.4 Quantification of Benefits and Interference

15D.6.5 Analysis of Mitigation Options

15D.6.6 Analysis Uncertainty

15D.7 Conclusion and Summary

15D.7.1 Benefits and Impacts

15D.7.2 Summation

Annex 15E (informative) Sample Analysis—effect of Out‐of‐band Emissions on a LBT Band

15E.1 Executive Summary

15E.2 Findings

15E.3 Scenario Definition. 15E.3.1 Study Question

15E.3.2 Benefits and Impacts of Proposal

15E.3.3 Scenario and Usage Model

15E.3.3.1 Frequency Relationships

15E.3.3.2 Usage Model

15E.3.3.3 Characteristics of Usage Model

Spatial and Power Characteristics

Temporal Characteristics

Frequency Relationships

Other Orthogonal Variables

15E.3.3.4 System Relationships. Systems Considered

Protection Distance

Geographic Area for Analysis

Impact of Interference

Interference Mitigation

Baseline

15E.3.4 Case(s) for Analysis

15E.4 Criteria for Interference. 15E.4.1 Interference Characteristics

15E.4.1.1 Impacted Level

15E.4.2 Measurement Event

15E.4.3 Interference Event

15E.4.4 Harmful Interference Criteria

15E.5 Variables

15E.6 Analysis—modeling, Simulation, Measurement, and Testing. 15E.6.1 Selection of the Analysis Approach, Tools and Techniques

15E.6.2 Matrix Reduction

15E.6.3 Performing the Analysis

15E.6.4 Quantification of Benefits and Interference

15E.6.5 Analysis of Mitigation Options

15E.6.6 Analysis Uncertainty

15E.7 Conclusion and Summary. 15E.7.1 Benefits and Impacts

15E.7.2 Summation

Annex 15F (informative) Sample Analysis—low‐power Radios Operating in the TV Band. 15F.1 Executive Summary

15F.2 Findings

15F.3 Scenario Definition. 15F.3.1 Study Question

15F.3.2 Benefits and Impacts of Proposal

15F.3.3 Scenario(s) and Usage Model

15F.3.3.1 Frequency Relationships

15F.3.3.2 Usage Model

15F.3.3.3 Characteristics of Usage Model

Spatial and Power Characteristics

Temporal Characteristics

Frequency Characteristics

Other Orthogonal Variables

15F.3.3.4 System Relationships. Systems Considered

Protection Distance

Geographic Area for Analysis

Impact of Interference

Interference Mitigation

Baseline

15F.3.4 Case(s) for Analysis

15F.4 Criteria for Interference. 15F.4.1 Interference Characteristics

15F.4.1.1 Impacted Level

15F.4.2 Measurement Event

15F.4.3 Interference Event

15F.4.4 Harmful Interference Criteria

15F.5 Variables

15F.6 Analysis—modeling, Simulation, Measurement, and Testing. 15F.6.1 Selection of the Analysis Approach, Tools, and Techniques. 15F.6.2 Matrix Reduction

15F.6.3 Performing the Analysis

15F.6.4 Quantification of Benefits and Interference

15F.6.5 Analysis of Mitigation Options

15F.6.6 Analysis Uncertainty

15F.7 Conclusion and Summary. 15F.7.1 Benefits and Impacts

15F.7.2 Summation

Annex 15G (informative) Sample Analysis—RF Test Levels for ANSI C63.9 [B3]

15G.1 Executive Summary

15G.2 Findings

15G.3 Scenario Definition. 15G.3.1 Study Question

15G.3.2 Benefits and Impacts of Proposal

15G.3.3 Scenario(s) and Usage Model

15G.3.3.1 Frequency Relationships

15G.3.3.2 Usage Model

15G.3.3.3 System Relationships. Systems Considered

Protection Distance

Geographic Area for Analysis

Impact of Interference

Interference Mitigation

Baseline

15G.3.4 Case(s) for Analysis

15G.4 Criteria for Interference. 15G.4.1 Interference Characteristics

15G.4.1.1 Impacted Level

15G.4.2 Measurement Event

15G.4.3 Interference Event

15G.4.4 Harmful Interference Criteria

15G.5 Variables

15G.6 Analysis—modeling, Simulation, Measurement, and Testing

15G.6.1 Selection of the Analysis Approach, Tools, and Techniques. 15G.6.2 Matrix Reduction

15G.6.3 Performing the Analysis. 15G.6.3.1 Field Strength at Recipient Circuit

15G.6.3.2 Modulation Characteristics

15G.6.4 Quantification of Benefits and Interference

15G.6.5 Analysis of Mitigation Options

15G.6.6 Analysis Uncertainty

15G.7 Conclusions and Summary. 15G.7.1 Benefits and Impacts

15G.7.2 Summation

Annex 15H (informative) Glossary

Annex 15I (informative) Bibliography

Notes

16 IEEE Standard for Architectural Building Blocks Enabling Network‐Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks

16.1 Overview. 16.1.1 Scope

16.1.2 Purpose

16.1.3 Document Overview

16.2 Normative References

16.3 Definitions, Acronyms, and Abbreviations. 16.3.1 Definitions

16.3.1.1 Base Station

16.3.1.2 Composite Wireless Network (CWN)

16.3.1.3 Context Information

16.3.1.4 Distributed Radio Resource Usage Optimization

16.3.1.5 Dynamic Spectrum Assignment

16.3.1.6 Dynamic Spectrum Sharing

16.3.1.7 IEEE 1900.4 compliant terminal

16.3.1.8 Multi‐homing Capability

16.3.1.9 Network Reconfiguration Manager

16.3.1.10 Operator Spectrum Manager

16.3.1.11 Radio Access Network (RAN)

16.3.1.12 Radio Access Network (RAN) Context Information

16.3.1.13 Radio Access Network (RAN) Measurement Collector

16.3.1.14 Radio Access Network (RAN) Reconfiguration Controller

16.3.1.15 Radio Enabler

16.3.1.16 Radio Interface

16.3.1.17 Radio Resource Selection Policy

16.3.1.18 Reconfigurable Terminal

16.3.1.19 Spectrum Assignment Policy

16.3.1.20 Terminal

16.3.1.21 Terminal Context Information

16.3.1.22 Terminal Measurement Collector (TMC)

16.3.1.23 Terminal Reconfiguration Controller (TRC)

16.3.1.24 Terminal Reconfiguration Manager (TRM)

16.3.1.25 User Preferences

16.3.2 Acronyms and Abbreviations

16.4 Overall System Description. 16.4.1 System Overview

16.4.2 Summary of use Cases

16.4.3 Assumptions. 16.4.3.1 General

16.4.3.2 Dynamic Spectrum Assignment

16.4.3.3 Dynamic Spectrum Sharing

16.4.3.4 Distributed Radio Resource Usage Optimization

16.5 Requirements. 16.5.1 System Requirements. 16.5.1.1 Decision Making

16.5.1.2 Context Awareness

16.5.1.3 Reconfiguration

16.5.2 Functional Requirements. 16.5.2.1 NRM Functionality

16.5.2.2 TRM Functionality

16.5.3 Information Model Requirements

16.6 Architecture. 16.6.1 System Description

16.6.1.1 Entities

16.6.1.2 Interfaces Between Entities

Interface Between the NRM and the TRM

Interface Between the TRM and the TRC

Interface Between the TRM and the TMC

Interface Between the NRM and the RRC

Interface Between the NRM and the RMC

Interface Between the NRM and the OSM

Interface Between Several NRMs

16.6.1.3 Reference Model

16.6.2 Functional Description

16.6.2.1 NRM Functions

16.6.2.2 TRM Functions

16.6.2.3 Interfaces of NRM and TRM Functions. NRM Interfaces

TRM Interfaces

16.7 Information Model. 16.7.1 Introduction

16.7.2 Information Modeling Approach

16.7.3 Information Model Classes

16.7.3.1 Common Base Class

16.7.3.2 Policy Classes

16.7.3.3 Terminal‐related Classes

16.7.3.4 CWN‐related Classes

16.8 Procedures. Introduction

16.8.2 Generic Procedures. 16.8.2.1 Collecting Context Information. Single Operator

Multiple Operator 1 (NRM is Inside Operator)

Multiple Operator 2 (NRM is Outside Operators)

16.8.2.2 Generating Spectrum Assignment Policies. Single Operator

Multiple Operator 1 (NRM is Inside Operator)

Multiple Operator 2 (NRM is Outside Operators)

16.8.2.3 Making Spectrum Assignment Decision. Single Operator

Multiple Operator 1 (NRM is Inside Operator)

Multiple Operator 2 (NRM is Outside Operators)

16.8.2.4 Performing Spectrum Access on Network Side. Single Operator

Multiple Operator 1 (NRM is Inside Operator)

Multiple Operator 2 (NRM is Outside Operators)

16.8.2.5 Generating Radio Resource Selection Policies. Single Operator

Multiple Operator 1 (NRM is Inside Operator)

Multiple Operator 2 (NRM is Outside Operators)

16.8.2.6 Performing Reconfiguration on Terminal Side. Single Operator

Multiple Operator 1 (NRM is Inside Operator)

Multiple Operator 2 (NRM is Outside Operators)

16.8.3 Examples of use Case Realization. 16.8.3.1 Dynamic Spectrum Assignment

16.8.3.2 Dynamic Spectrum Sharing

16.8.3.3 Distributed Radio Resource Usage Optimization

Annex 16A (informative) Use Cases. 16A.1 Dynamic Spectrum Assignment

16A.1.1 Single Operator Scenario

16A.1.2 Multiple Operator Scenario 1 (NRM is Inside Operator)

16A.1.3 Multiple Operator Scenario 2 (NRM is Outside Operators)

16A.2 Dynamic Spectrum Sharing

16A.3 Distributed Radio Resource Usage Optimization

Annex 16B (informative) Class Definitions for Information Model. 16B.1 Notational Tools

16B.2 Common Base Class

16B.3 Policy Classes

16B.4 Terminal Classes

16B.5 CWN Classes

16B.6 Relations Between Terminal and CWN Classes

Annex 16C (informative) Data Type Definitions for Information Model. 16C.1 Function Definitions

16C.2 ASN.1 Type Definitions

Annex 16D (informative) Information Model Extensions and Usage Example. 16D.1 Functions for External Management Interface

16D.2 Additional Utility Classes

16D.3 Additional ASN.1 Type Definitions for Utility Classes

16D.4 Example for Distributed Radio Resource Usage Optimization Use Case

Annex 16E (informative) Deployment Examples. 16E.1 Introduction

16E.2 Deployment Examples for Single Operator Scenario

16E.3 Multiple Operator Scenario 1 (NRM is Inside Operator)

16E.4 Multiple Operator Scenario 2 (NRM is Outside Operator)

Annex 16F (informative) Bibliography

Notes

17 IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems

17.1 Overview. 17.1.1 Scope

17.1.2 Purpose

17.1.3 Document Overview

17.2 Normative References

17.3 Definitions, Acronyms, and Abbreviations

17.3.1 Definitions

17.3.2 Acronyms and Abbreviations

17.4 Architecture Requirements for Policy‐based Control of DSA Radio Systems

17.4.1 General Architecture Requirements

17.4.1.1 Accreditation

17.4.1.2 Policy Conformance Reasoner (PCR)

17.4.1.3 System Strategy Reasoning Capability (SSRC)

17.4.2 Policy Management Requirements. 17.4.2.1 Policy Management

17.4.2.2 Revocability

17.4.2.3 Effectivity

17.4.2.4 Non‐repudiation of Policy Traceability

17.4.2.5 Policies and Policy Messaging

17.4.2.6 Policy Matching and Comparison

17.4.2.7 Logging

17.4.2.8 Security Requirements

17.4.2.9 Notification Feedback Channels

17.5 Architecture Components and Interfaces for Policy‐based Control of DSA Radio Systems

17.5.1 Policy Management Point

17.5.1.1 Functions Performed

17.5.1.2 Inputs

17.5.1.3 Outputs

17.5.1.4 Interfaces

17.5.2 Policy Conformance Reasoner

17.5.2.1 Functions Performed

17.5.2.2 Inputs

17.5.2.3 Outputs

17.5.2.4 Interfaces

17.5.3 Policy Enforcer (PE)

17.5.3.1 Functions Performed

17.5.3.2 Inputs

17.5.3.3 Outputs

17.5.3.4 Interfaces

17.5.4 Policy Repository

17.5.4.1 Functions Performed

17.5.4.2 Inputs

17.5.4.3 Outputs

17.5.4.4 Interfaces

17.5.5 System Strategy Reasoning Capability (SSRC)

17.5.5.1 Functions Performed

17.5.5.2 Inputs

17.5.5.3 Outputs

17.5.5.4 Interfaces

17.6 Policy Language and Reasoning Requirements

17.6.1 Language Expressiveness. 17.6.1.1 General Expressiveness Requirements

Declarative Language

Natural Language Annotations to Formal Statements of the Policy Language

Machine‐understandable Syntax

Permissive and Restrictive Policies

Inheritance

Capable of Specifying the Dynamics

Capable of Defining New Functions

Language Features

Two Types of Negation

Types of Policies

Meta‐policies

Policy Composition

Policy Templates

Nested Policies

17.6.1.2 Ontology Language Requirements

Domain Ontologies

Domain Concepts

17.6.1.3 Expressions

17.6.1.4 Policy Language Support of Data Types

17.6.2 Reasoning About Policies

17.6.2.1 Formal Language System Requirements

17.6.2.2 Negation

17.6.2.3 Policy Language Semantics

17.6.2.4 Types of Reasoning

17.6.2.5 Reflection and Awareness

Annex 17A (informative) Use Cases. 17A.1 Example DSA Policy Management Architecture

Annex 17B (informative) Illustrative Examples of DSA Policy‐based Architecture

Annex 17C (informative) Relation of IEEE 1900.5 Policy Architecture to Other Policy Architectures

Annex 17D (informative) Characteristics of Imperative (procedural) and Declarative Languages for Satisfying Language Requirements for Cognitive Radio Systems. 17D.1 Types of Languages

17D.1.1 Imperative (or Procedural)

17D.1.2 Declarative

Annex 17E (informative) Example Sequence Diagrams of IEEE 1900.5 System. 17E.1 Overview

17E.2 Assumptions

17E.3 Sequence Diagram Organization

Annex 17F (informative) Bibliography

Notes

Chapter 18 IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems

18.1 Overview

18.1.1 Scope

18.1.2 Purpose

18.1.3 Interfaces and Sample Application Areas. 18.1.3.1 IEEE 1900.6 Interfaces

18.1.3.2 Reporting Data Format of the Sensing‐related Information

18.1.3.3 Single‐device Sensing and Multiple‐device Sensing

18.1.3.4 Usage of Spectrum Sensing Cognitive Radio (CR) for the Investigation of Policy Violations

18.1.4 Conformance Keywords

18.2 Normative References

18.3 Definitions, Acronyms, and Abbreviations. 18.3.1 Definitions

18.5.2 Acronyms and Abbreviations

18.4 System Model

18.4.1 Scenario 1: Single CE/DA and Single Sensor

18.4.2 Scenario 2: Single CE/DA and Multiple Sensors

18.4.3 Scenario 3: Multiple CE/DA and Single Sensor

18.5 The IEEE 1900.6 Reference Model. 18.5.1 General Description

18.5.2 An Implementation Example of the IEEE 1900.6 Reference Model

18.5.3 Service Access Points

18.5.3.1 Measurement Service Access Point

Measurement Capabilities Discovery Services

Get_Supported_Spectrum_Measurement_Description.request

Get_Supported_Spectrum_Measurement_Description.response

Measurement Configuration Discovery Services

Get_Sensor_PHY_Description.request

Get_Sensor_PHY_Description.response

Get_Sensor_Antenna_Description.request

Get_Sensor_Antenna_Description.response

Get_Sensor_Location_Description.request

Get_Sensor_Location_Description.response

Measurement Configuration Services

Set_Sensor_Measurement_Obj.request

Set_Sensor_Measurement_Obj.response

Set_Sensor_Measurement_Profile.request

Set_Sensor_Measurement_Profile.response

Set_Sensor_Measurement_Performance.request

Set_Sensor_Measurement_Performance.response

Information Services

Get_Sensor_ Manufacturer_Profile.request

Get_Sensor_Manufacturer_Profile.response

Get_Sensor_ Power_Profile.request

Get_Sensor_Power_Profile.response

Get_Sensor_Measurement_Profile.request

Get_Sensor_Measurement_Profile.response

Get_Measurement_Location_Information.request

Get_Measurement_Location_Information.response

Get_Signal_Measurement_Value.request

Get_Signal_Measurement_Value.response

Get_Channel_Measurement_Value.request

Get_Channel_Measurement_Value.response

Get_RAT_ID_Value.request

Get_RAT_ID_Value.response

Notify

18.5.3.2 Communication Service Access Point

Sensing‐related Information Send Service

Sensing_Related_Information_Send.request

Sensing_Related_Information_Send.response

Sensing‐related Information Receive Service

Sensing_Related_Information_Receive.request

Sensing_Related_Information_Receive.response

Information Services

Get_CommSubsys_Profile.request

Get_CommSubsys_Profile.response

Notify

18.5.3.3 Application Service Access Point

Sensor discovery service

Get_ Sensor_Logical_ID.request

Get_Sensor_Logical_ID.response

Get_CommSubsys_ID.request

18.7 Get_CommSubsys_ID.response

Sensing‐related Information Access Services

Read_Sensing_Related_Info.request

Read_Sensing_Related_Info.response

Write_Sensing_Related_Info.request

Write_Sensing_Related_Info.response

Management and Configuration Services

Lock.request

Lock.response

Unlock. Unlock.request

Unlock.response

BreakLock.request

BreakLock.response

Trigger.request

Trigger.response

Comm_Management.request

Comm_Management.response

Information services

Get_ Client_Profile.request

Get_Client_Profile.response

Notify

18.6 Information Description

18.6.1 Information Categories

18.6.1.1 Sensing Information

18.6.1.2 Sensing Control Information

18.6.1.3 Control Commands

Structure of Control Commands

Control Command Parameters

18.6.1.4 Sensor Information

18.6.1.5 Requirements Derived from Regulation

18.6.2 Data Types

18.6.2.1 Primitive and Simple Data Types

Boolean

Integer

Unsigned Integer

Float

String

Vector

Array

18.6.2.2 Complex and Derived Data Types

Enumeration

Fixed‐point

Unsigned Fixed‐point

Structured

18.6.3 Description of Sensing‐related Parameters

18.6.3.1 Frequency

18.6.3.2 Second

18.6.3.3 Time Reference (RSecond)

18.6.3.4 Microsecond

18.6.3.5 Angle

18.6.3.6 Reference Geolocation (RGeolocation)

18.6.3.7 Power

18.6.3.8 Time Stamp (TimeStamp)

18.6.3.9 Time Duration (TimeDuration)

18.6.3.10 Channel List (ChList)

18.6.3.11 Bandwidth

18.6.3.12 Total Measurement Duration (TotMeasuDur)

18.6.3.13 Channel Order (ChOrder)

18.6.3.14 Reporting Rate (ReportRate)

18.6.3.15 Reporting Mode (ReportMode)

18.6.3.16 Performance Metric (PerfMetric)

18.6.3.17 Route

18.6.3.18 ClientPriorityFlag

18.6.3.19 SensorPriority

18.6.3.20 Security Level (SecLevel)

18.6.3.21 DataKey

18.6.3.22 ClientLogID

18.6.3.23 Time Synchronization (TimeSync)

18.6.3.24 Scan

18.6.3.25 Absolute Sensor Location (AbsSensorLocation)

18.6.3.26 Relative Sensor Location (RelSensorLocation)

18.6.3.27 Measurement Range (MeasuRange)

18.6.3.28 SensingMode

18.6.3.29 SensorID

18.6.3.30 Sensor Logical ID (SensorLogID)

18.6.3.31 BatteryStatus

18.6.3.32 DataSheet

18.6.3.33 ConfidenceLevel

18.6.3.34 Measurement Bandwidth (MeasuBandwidth)

18.6.3.35 NoisePower

18.6.3.36 SignalLevel

18.6.3.37 Modulation Type (ModuType)

18.6.3.38 TrafficPattern

18.6.3.39 TrafficInformation

18.6.3.40 SignalType

18.6.3.31 SignalDesc

18.6.3.32 RATID

18.6.4 Data Representation

18.6.4.1 ControlInformation Class

18.6.4.2 SensorInformation Class

18.6.4.3 SensingInformation Class

18.6.4.4 RegulatoryRequirement Class

18.7 State Diagram and Generic Procedures

18.7.1 State Description. 18.7.1.1 Initialization State

18.7.1.2 Idle State

18.7.1.3 Data Gathering State

18.7.1.4 Communication State

18.7.1.5 Simultaneous Communication and Data Gathering State

18.7.2 State Transition Description. 18.7.2.1 Initialization State→Idle State

18.7.2.2 Idle State→Data Gathering State

18.7.2.3 Idle State←Data Gathering State

18.7.2.4 Idle State→Communication State

18.7.2.5 Idle State←Communication State

18.7.2.6 Data Gathering State→Communication State

18.7.2.7 Data Gathering State←Communication State

18.7.2.8 Idle→Simultaneous Communication and Data Gathering State

18.7.2.9 Idle←Simultaneous Communication and Data Gathering State

18.7.2.10 Simultaneous Communication and Data Gathering State→Communication State

18.7.2.11 Simultaneous Communication and Data Gathering State←Communication State

18.7.2.12 Simultaneous Communication and Data Gathering State→Data Gathering State

18.7.2.13 Simultaneous Communication and Data Gathering State←Data Gathering State

18.7.3 Generic Procedures. 18.7.3.1 Purpose

18.7.3.2 Generic Procedure and Notations

18.7.4 Example Procedures for Use Cases

18.7.4.1 CE–Sensor Procedure

18.7.4.2 DA–Sensor Procedure

18.7.4.3 CE–DA Procedure

18.7.4.4 CE–CE Procedure

18.7.4.5 Sensor–Sensor Procedure

Annex 18A (informative) Use cases

18A.1 Use Cases from the Perspective of Spectrum Usage

18A.1.1 SPOLD

18A.1.1.1 Emergency Services (SPOLD1)

18A.1.1.2 Load Sharing to reduce blocking at Peak Traffic Times (SPOLD2)

18A.1.1.3 Sharing of Spectrum to reduce blocking at Peak Traffic Times (SPOLD3)

18A.1.1.4 Self‐management of Uncoordinated Spectrum (SPOLD4)

18A.1.1.5 Introduction of New Users or Services (SPOLD5)

18A.1.1.6 Worldwide Mobility (SPOLD6)

18A.1.2 SPOSD

18A.1.2.1 Tamper‐resistant Services (SPOSD1)

18A.1.2.2 Ad hoc licensee service—virtual spectrum coordination model (SPOSD2)

18A.1.2.3 Ad hoc licensee service—underlay spectrum coordination model (SPOSD3)

18A.1.2.4 Self‐management of Uncoordinated Spectrum (SPOSD4)

18A.1.3 Service Enhanced Models (SEM)

18A.1.3.1 Network Extension (SEM1)

18A.1.3.2 Dynamic Access Additional Spectrum (SEM2)

18A.1.3.3 Temporary Reconfiguration (SEM3)

18A.1.3.4 Interface to Non‐first Responders (SEM4)

18A.1.3.5 Policy Investigation (SEM5)

18A.1.3.6 An ad hoc network model composed of multimode virtual AP/BS in several primary service areas (SEM6)

18A.1.4 IEEE 1900.4‐enabled Dynamic Spectrum Access use Cases

18A.1.4.1 Dynamic Spectrum Assignment (DS Assignment)

18A.1.4.2 Dynamic Spectrum Sharing (DSS)

18A.1.4.3 Distributed Radio Resource Usage Optimization (DRRUO)

18A.2 Perspective of Spectrum Sensing

18A.2.1 Distributed Sensing Models (DSMs)

18A.2.1.1 CR System with Distributed Sensors (DSM1)

18A.2.1.2 Peer‐to‐peer CRs (DSM2)

18A.2.2 Sensing Enhanced Models (SeEM)

18A.2.2.1 Faulty Sensing Prevention (SeEM1)

18A.2.2.2 Power Constrained Sensing (SeEM2)

18A.2.2.3 Priority based Sensing Information Provision (SeEM3)

18A.2.3 Sensing Models for Spectrum Coordination

18A.2.3.1 Network Node Spectrum Coordination Model

18A.2.3.2 Mobile Node Spectrum Coordination Model

18A.2.3.3 Extension Models

Annex 18B (informative) Use case classification

Annex 18C (informative) Implementation of distributed sensing. 18C.1.1 General Description

18C.1.2 Assumptions/Requirement

18C.1.3 Examples. 18C.1.3.1 Embedded/Plugged Sensor Type I (Spectrum Sensor Collocated with CE)

18C.1.3.2 Embedded/Plugged Sensor Type II (Spectrum Sensor not Collocated with CE)

18C.1.3.3 Distributed Standalone Sensor Type I (Information Exchange between CE or DA and a Sensor)

18C.1.3.4 Distributed Standalone Sensor Type II (Information Exchange between CE or DA and Smart Sensor)

18C.1.3.5 Distributed Standalone Sensor Type III (Information Exchange between Sensor and Smart Sensor or between Smart Sensors)

Annex 18D (informative) IEEE 1900.6 DA: Scope and usage. 18D.1 Introduction

18D.2 Scope and Usage of the DA

18D.2 Categories of Information Stored at DA

18D.2.1 Sensing‐related Information

18D.3.2 Regulatory and Policy Information

18D.4 DA Requirements

18D.5 Necessary Interfaces

18D.6 DA Services

18D.7 Deployment Examples

Annex 18E (informative) Analysis of available/future technologies

Annex 18F (informative) Bibliography

Notes

Annex 19A IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation

19.1 Overview. 19.1.1 Scope

19.1.2 Purpose

19.2 Definitions, Acronyms, and Abbreviations. 19.2.1 Definitions

19.2.2 Acronyms and Abbreviations

19.3 Reference Model

19.4 MAC Sublayer. 19.4.1 Architecture of the MAC Sublayer

19.4.2 Type Definition

19.4.3 MAC Frame Formats

19.4.3.1 Frame Format Convention

19.4.3.2 General MAC Frame Format

MAC Header. FrameControl

DestAddr

SrcAddr

MAC Payload

Cyclic Redundancy Check (CRC)

19.4.3.3 Beacon Frame

19.4.3.4 Request to Send (RTS) Frame

19.4.3.5 Clear to Send (CTS) Frame

19.4.3.6 Data Frame

19.4.3.7 ACK Frame

19.4.4 MAC Sublayer Service Specification. 19.4.4.1 MAC Data Service. Data Service Message Sequence Chart

MAC‐DATA.request

MAC‐DATA.confirm

MAC‐DATA.indication

19.4.4.2 MAC Management Service

Association Message. MLME‐ASSOCIATE.request

MLME‐ASSOCIATE.confirm

MLME‐ASSOCIATE.indication

MLME‐ASSOCIATE.response

Association Message Sequence Chart

Disassociation Primitives

MLME‐DISASSOCIATE.request

MLME‐ DISASSOCIATE.indication

MLME‐DISASSOCIATE.confirm

Disassociation Message Sequence Charts

MLME‐BEACON‐NOTIFY.indication

Primitives for Resetting the MAC Sublayer

MLME‐RESET.request

MLME‐RESET.confirm

Primitives for Channel Scanning

MLME‐SCAN.request

MLME‐SCAN.confirm

Communication Status Primitive

Primitive for Updating the Superframe Configuration

MLME‐START.request

MLME‐START.confirm

Primitives for Synchronizing with a Coordinator

MLME‐SYNC.request

MLME‐SYNC‐LOSS.indication

MAC Enumeration Description

19.4.5 MAC Functional Description

19.4.5.1 Channel Access. Timing Structure

CSMA‐CA Algorithm

Network Allocation Vector

Medium Status

Parameters

Obtaining a TXOP

Using a TXOP

Invoking a Backoff Procedure

Decrementing a Backoff Counter

Frame Processing

19.4.5.2 Starting and Maintaining Network

Scanning

Starting a Network

Beacon

Device Discovery

19.4.5.3 Synchronization

Synchronization with Beacons

Orphaned Device Realignment

19.4.5.4 Association and Disassociation

Association

Disassociation

19.4.5.5 Transmission, Reception, and Acknowledgment

Transmission

Reception and Rejection

Acknowledgment

Retransmissions

Transmission Scenarios

19.4.5.6 MAC Sublayer Parameters

19.5 PHY Layer. 19.5.1 PHY Layer Service Specification

19.5.1.1 PHY Data Service

PD‐DATA.request

PD‐DATA.confirm

PD‐DATA.indication

19.5.1.2 PHY Management Service

PLME‐CCA.request

PLME‐CCA.confirm

PLME‐SET‐TRX‐STATE.request

PLME‐SET‐TRX‐STATE.confirm

19.5.1.3 PHY Enumerations Description

19.5.2 CRC Method

19.5.3 Channel Coding (Including Interleaving and Modulation) 19.5.3.1 Scrambling

19.5.3.2 Convolutional Coding

19.5.3.3 Puncturing

19.5.3.4 Bit Interleaving

19.5.3.5 Bit Padding

19.5.3.6 Modulation and Coding Scheme

19.5.4 Mapping Modulated Symbols to Carriers. 19.5.4.1 Payload. In the Case of the Data

In the Case of the Beacon

In Both Cases

19.5.4.2 Preamble

19.5.5 Transmitter Requirements

Annex 19A (informative) Coexistence Considerations

Note

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

George F. Elmasry Rockwell Collins Advanced Technology Center USA

Dr. Elmasry has an interdisciplinary background in electrical and computer engineering and computer science. He is active in research, patenting, publications, grant proposals as well as system engineering of defense and commercial aerospace wireless communications systems. He has experience with technical task leads, team building and management. Dr. Elmasry has over 50 peer‐reviewed publications and countless patents that pertain to network resource management, network management, network operation, software defined radios, cognitive networking, resilient communications and network and transport layers algorithms.

.....

Autocorrelation based spectrum sensing can use a bank of signal generators, samplers, and correlators to detect the presence of multiple signals.

Notice the difference between time‐domain cyclic marks and frequency domain cyclic marks. OFDM signals use a frequency‐domain cyclic prefix, which protects the OFDM signals12 from inter‐symbol interference. This cyclic prefix can be utilized in a frequency‐domain based correlation technique to affirm the presence of the targeted signal. If the targeted signal uses a preamble of symbols, this preamble can be utilized to affirm the presence of the signal in time‐domain correlation. Both cyclic prefix and time‐domain preamble can help the autocorrelation capable sensor decrease the probability of misdetection and the probability of false alarm when making a decision regarding the presence of the targeted signal.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Dynamic Spectrum Access Decisions
Подняться наверх