A Field Guide to British Rivers
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
George Heritage. A Field Guide to British Rivers
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
A Field Guide to British Rivers
Foreword
1 British Rivers: Status and Condition. 1.1 Introduction
1.2 The Importance of River and Floodplains
1.3 River and Floodplain Degradation
1.4 River and Floodplain Recovery
1.5 Purpose of This Book
2 River Types: A Brief Overview. 2.1 Introduction
2.2 Classification
2.3 Functional Classifications
2.3.1 Leopold and Wolman (1957)
2.3.2 Process‐Based Classification of Montgomery and Buffington (1997)
2.3.3 River Styles Framework
2.3.4 Extended River Typology
2.3.5 Scottish Environment Protection Agency (SEPA) Classification
2.4 River Classification Framework Used in This Book
3 River Types: Observations and Theory
3.1 Diffuse Upland Channels. Key Characteristics
3.1.1 Background Research on Diffuse Upland Channels
3.1.1.1 Processes: Water and Sediment
3.1.1.2 Predicting and Mapping Channel Head Locations
3.1.2 Valley Bottom Morphology. 3.1.2.1 Moorland Seepage Zone
3.1.3 In‐channel Morphology
3.1.3.1 Bedrock Step
3.1.3.2 Boulder Step
3.1.3.3 Pool
3.1.3.4 Overland Flow Channel
3.2 Bedrock Channels: Background Research. Key Characteristics
3.2.1 Background Research on Bedrock Channels
3.2.1.1 Setting
3.2.1.2 Characteristic Morphology
3.2.1.3 Large‐Scale Features. 3.2.1.3.1 Cascades and Step‐pools
3.2.1.3.2 Knickpoints
3.2.1.3.3 Gorges
3.2.1.3.4 Inner‐channels
3.2.1.4 Small‐Scale Features. 3.2.1.4.1 Potholes
3.2.1.4.2 Flutes
3.2.1.4.3 Furrows
3.2.1.5 Processes Operating in Bedrock Channels
3.2.1.6 Hydraulics
3.2.1.6.1 Sediment Transport
3.2.2 Bedrock System Morphology
3.2.2.1 Valley Bottom Morphology
3.2.2.2 Exposed Bedrock Banks
3.2.2.3 Bedrock Cascade
3.2.2.4 Bedrock Controlled Rapid
3.2.2.5 Bedrock Influenced Pool
3.3 Bedrock Influenced Channels: Step‐Pool Channel. Key Characteristics
3.3.1 Background Research on Bedrock‐Influenced Step‐Pool Channels. 3.3.1.1 Significance
3.3.1.2 Background
3.3.1.3 Formation
3.3.1.3.1 Models of Step‐Pool Channel Formation
3.3.1.4 Morphological Character
3.3.1.5 Hydraulics
3.3.1.6 Flow Resistance
3.3.1.7 Bedload Transport
3.3.2 Valley Bottom Morphology
3.3.2.1 Silt/Boulder Berm
3.3.2.2 Boulder Splay
3.3.2.3 Slumped Valley Side Deposits
3.3.3 In‐channel Morphology. 3.3.3.1 Waterfall
3.3.3.2 Plunge Pool Bar
3.3.3.3 Bedrock Step
3.3.3.4 Boulder Step
3.3.3.5 Bedrock Pool
3.3.3.6 Boulder Lag
3.3.3.7 Fan Rapid
3.3.3.8 Bank Collapse Rapid
3.3.3.9 Lateral Bar
3.3.3.10 Lee Bar
3.3.3.11 Fine Sediment Drape
3.4 Pool‐Rapid Channels. Key Characteristics
3.4.1 Background Research on Pool‐Rapid Channels
3.4.2 Valley Bottom Morphology
3.4.3 In‐channel Morphology. 3.4.3.1 Boulder Cascade
3.4.3.2 Hydraulically Controlled Rapid
3.4.3.3 Outcrop‐Induced Rapid
3.4.3.4 Bank Collapse Rapid
3.4.3.5 Plane Bed
3.4.3.6 Coarse Sediment Pool
3.4.3.7 Valley Bottom Fan Deposits
3.5 Wandering Channels. Key Characteristics
3.5.1 Wandering Channel Research Summary
3.5.1.1 UK Research into Wandering Channels
3.5.1.1.1 Historical Channel Changes
3.5.1.1.2 Technologically Driven Studies
3.5.1.1.3 More Recent River Survey Technological Advances
3.5.1.1.4 Wandering Channel Research Outside Britain: Historical Channel Change
3.5.1.1.5 Process‐Based Investigations
3.5.2 Valley Bottom Morphology
3.5.2.1 Terrace
3.5.2.2 Inactive Floodplain
3.5.2.3 Active Floodplain
3.5.2.4 Inset Berms
3.5.2.5 Palaeo‐channels
3.5.2.6 Avulsion Driven Cut‐offs
3.5.2.7 Chute Cut‐off Channels
3.5.2.8 Gravel Splays
3.5.3 In‐channel Morphology
3.5.3.1 Bars/Islands
3.5.3.2 Inner Bend Bars
3.5.3.3 Chute Channels
3.5.3.4 Chute Channel Bars
3.5.3.5 Lateral Bars
3.5.3.6 Mid‐channel Bars
3.5.3.7 Transverse Bars
3.5.3.8 Riffles
3.5.3.9 Rapids
3.5.3.10 Large Woody Material
3.5.3.11 Vertical Eroding Banks (River Cliffs)
3.6 Coarse‐Sediment Anabrancing Channels. Key Characteristics
3.6.1 Research Background to Coarse‐Sediment Anabranching Channels
3.6.1.1.1. Anabranching Channel Types
3.6.1.1.2. Anabrancing Channel Functioning
3.6.2 Valley Bottom Morphology
3.6.2.1 Inactive Floodplains/Higher Terraces
3.6.2.2 Active Floodplains
3.6.2.3 Secondary Channels
3.6.2.4 Sub‐channels
3.6.2.5 Wooded Islands/Bars
3.6.2.6 Isolated Open Water
3.6.3 In‐channel Morphology. 3.6.3.1 Main Channel
3.6.3.2 Pools
3.6.3.3 Riffles
3.6.3.4 Transverse Bars
3.6.3.5 Point Bars
3.6.3.6 Vegetation‐Induced Stalled Bars/Riffles
3.7 Fine‐Sediment Anastomosed Channels. Key Characteristics
3.7.1 Fine Sediment Anastomosed Channels
3.7.2 Research Background into Anastomosing Rivers
3.7.2.1 Process‐Form Studies of Anastomosing Systems
3.7.2.2 Avulsion Processes in Anastomosing Systems
3.7.2.2.1 Hypothesis 1
3.7.2.2.2 Hypothesis 2
3.7.2.2.3 Hypothesis 3
3.7.2.2.4 Hypothesis 4
3.7.3 Valley Bottom Morphology. 3.7.3.1 Terrace
3.7.3.2 Inactive Floodplain
3.7.3.3 Active Floodplain
3.7.3.4 Secondary Channels
3.7.3.5 Isolated Open Water
3.7.3.6 Wooded Island/Bar
3.7.4 In‐channel Morphology. 3.7.4.1 Main Channel
3.7.4.2 Pools
3.7.4.3 Fine Sediment Berm/Bar
3.7.4.4 Woody Material
3.8 Active Single‐Thread Channels. Key Characteristics
3.8.1 Background Research on Active Single‐Thread Channels
3.8.1.1 Active Single‐Thread Channel Systems
3.8.1.2 Pool‐Riffle‐Point Bar Channels
3.8.1.3 Low Sinuosity (Pool‐Riffle) Channels
3.8.1.3.1 Pool‐Riffle Formation Processes
3.8.1.3.2 Pool‐Riffle Unit and Maintenance Processes
3.8.1.3.3 Implications for River Management
3.8.1.4 High Sinuosity Pool‐Riffle‐Point Bar Channels
3.8.1.4.1 Meander Morphology
3.8.1.4.2 Meander Hydraulics
3.8.1.4.3 Modelling Meandering Rivers
3.8.1.4.4 Studies on British Rivers Focusing on Sinuous Channel Planform Change
3.8.1.4.5 Modelling‐Based Studies on British Rivers
3.8.1.4.6 Studies of Flow Structure on Active Single‐Thread British Rivers
3.8.1.5 Plane‐Bed Channels
3.8.1.5.1 Large Wood in Plane‐bed Channels
3.8.1.5.2 Rapids or Plane‐bed?
3.8.1.5.3 Physical Measurements of Processes
3.8.1.6 Glides and Runs
3.8.1.6.1 Physical Instream Habitat Characteristics
3.8.1.6.2 Morphological Characterisation through Remote Sensing
3.8.2 Active Single Thread: Floodplain Features
3.8.2.1 Terraces
3.8.2.2 Palaeo‐channels
3.8.2.3 Avulsion‐driven Cut‐offs
3.8.2.4 Chute Cut‐off Channels
3.8.2.5 Inset Floodplain/Berms
3.8.2.6 Gravel Splays
3.8.3 Active Single Thread: Pool‐Riffle in‐channel Features. 3.8.3.1 Riffles
3.8.3.2 Pools
3.8.4 Active Single Thread: Pool‐Riffle‐Point Bar in‐Channel Features. 3.8.4.1 Riffles
3.8.4.2 Pools/Apical Pools
3.8.4.3 Point Bars
3.8.4.4 River Cliffs
3.8.4.5 Lateral Bars
3.8.4.6 Transverse Bar
3.8.4.7 Chute Channel Cut‐offs
3.8.5 Active Single Thread: Plane‐Bed In‐Channel Features
3.8.5.1 Plane‐bed
3.9 Passive Single‐Thread (Varied Sinuosity) Key Characteristics
3.9.1 Background Research to Passive Single‐Thread Channels
3.9.1.1.1. The Brown Model for Evolution Towards Passive Single‐Thread
3.9.1.1.2. The Post‐Medieval Period
3.9.1.1.3. Chalk Streams
3.9.1.1.4. Restoration
3.9.2 Valley Bottom Morphology in Passive Single‐Thread Systems. 3.9.2.1 Terraces
3.9.2.2 Inactive Floodplains
3.9.2.3 Palaeo‐channels
3.9.3 In‐Channel Morphology. 3.9.3.1 Pools
3.9.3.2 Riffles
3.9.3.3 Mid‐channel/Transverse Bars
3.9.3.4 Lateral Bars/Point Bars
3.9.3.5 Silt Berms
3.9.3.6 Vegetated Berms
3.9.3.7 Live Woody Features
3.9.3.8 Lee Sediment Deposits
4 “Reading” Rivers. 4.1 Morphologic Unit‐Based Process Indicators
4.1.1 Evidence of Contemporary Lateral Erosion. 4.1.1.1 Vertical or Near Vertical Unvegetated Banks
4.1.1.2 Eroding Banks and Associated Bar Features
4.1.1.3 Obstruction‐Induced Lateral Erosion (Including Revetment Failure)
4.1.1.4 Terrace Cliffs
4.1.2 Evidence of Historic Lateral Erosion. 4.1.2.1 Valley Bottom Palaeo‐Features
4.1.2.2 Semi‐vegetated Banks
4.1.2.3 Fence Lines/Exposed Revetment
4.1.2.4 Loss of Coherent Riparian Margin
4.1.3 Evidence of Contemporary Vertical Erosion. 4.1.3.1 Over Deep Channel Geometry
4.1.3.2 Exposed Former Channel Bed
4.1.3.3 Inset Floodplain (Complex Cut and Fill Activity)
4.1.3.4 Armoured Coarse Channel
4.1.3.5 Wide Coarse Sediment Margins
4.1.3.6 Frequent Bank Failure
4.1.3.7 Stranded/Angled Riparian Vegetation
4.1.3.8 Bridge Scour
4.1.4 Evidence of Historic Vertical Erosion. 4.1.4.1 Valley Bottom Terraces
4.1.5 Evidence of Contemporary Sediment Deposition. 4.1.5.1 Berm Development
4.1.5.2 Vegetation Induced Accretion
4.1.5.3 Coarse Sediment Bar Development
4.1.5.4 Loss of Channel Definition
4.1.5.5 Climbing and Stalled Gravel Lobes
4.1.5.6 Floodplain Gravel Splays
4.1.5.7 Plane‐Bed
4.1.6 Evidence of Historic Sediment Deposition. 4.1.6.1 Structure Burial
4.1.7 Evidence of Sediment Transport. 4.1.7.1 Over‐Loose Clean Gravel‐Bed Channels
4.1.7.2 Sediment Lobes and Ribbons
4.1.7.3 Particle Clusters
4.1.7.4 Sediment Drapes
4.1.7.5 Lobes, Dunes, Ripples, and Fine Sediment Choking
4.1.8 Evidence of Sediment Starvation. 4.1.8.1 Absence of Expected Features
4.1.8.2 Inset Channels and Bed Armouring
4.1.9 Evidence of Sediment Over‐Supply. 4.1.9.1 Over‐Loose Riffle Features
4.1.9.2 Plane‐Bed Reaches
4.1.9.3 Choked Beds
4.1.9.4 Gravel Stalling
4.1.10 Complex Response. 4.1.10.1 Cut‐and‐Fill
4.1.10.2 Gross Channel Infilling
5 Towards Sensitive And Appropriate Management. 5.1 Historic and Current River and Floodplain Alteration
5.2 Extent of Channel Change
5.3 Towards the Future
References
Place and River Index. b
c
e
h
l
r
s
w
Subject Index. a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
r
s
t
u
v
w
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
George Heritage
.....
Source: www.riverhabitatsurvey.org/wp-content/uploads/2012/07/RHS.pdf
It is interesting to review the figures above against the Water Framework Directive measure of river health currently being used across Europe. Entwistle et al. (2019a) used floodplain land‐use data for 2017 broken down according to current water body status generating 2975 auditable units. Water bodies presently at Good status were selected (n = 375), arable and horticulture covers in excess of 50% of the floodplain area on around 15% of Good status water bodies, this increases to around 50% for area under improved grassland and when the two are considered together between 70 and 75% of Good Status water bodies are covered by at least 50% farmland. Around half of these water bodies are utilised over 90% by farming.
.....