Ice Adhesion

Ice Adhesion
Автор книги: id книги: 1877861     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 24049,2 руб.     (222,66$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119640509 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The book containing 18 chapters is divided into three parts: Part 1: Fundamentals of Ice Formation and Ice Characteristics; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered Include: Factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; anti-icing using microstructured surfaces; durability assessment of icephobic coatings; bio-inspired icephobic coatings; challenges in rational fabrication of icephobic surfaces; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.

Оглавление

Группа авторов. Ice Adhesion

Table of Contents

List of Tables

List of Illustrations

Pages

Ice Adhesion. Mechanism, Measurement and Mitigation

Preface

1 Factors Influencing the Formation, Adhesion, and Friction of Ice

1.1 A Brief History of Man and Ice. 1.1.1 Ice on Earth

1.1.2 Man is Carved of Ice

1.1.3 Modern Man Carves Ice

1.2 A Thermodynamically Designed Anti-Icing Surface

1.2.1 Homogeneous Classical Nucleation Theory

1.2.2 Heterogeneous Classical Nucleation Theory

1.2.3 Predicting Delays in Ice Nucleation

1.2.4 Predicting Ice Nucleation Temperatures

1.3 The Adhesion of Ice to Surfaces

1.3.1 Wetting and Icing of Ideal Surfaces

1.3.2 Wetting of Real Surfaces

1.3.3 Ice Adhesion to Real Surfaces

1.4 The Sliding Friction of Ice

1.4.1 Ice Friction Regimes

1.4.2 The Origin of Ice’s Liquid-Like Layer

1.4.3 Parameters Affecting the Friction Coefficient of Ice In the following subsection the effect of each important parameter on the coefficient of friction of ice is discussed. Particularly, the important parameters will be presented through their relationship to the thickness of the pertinent liquid-like lubricating layer

1.5 Summary

References

Note

2 Water and Ice Nucleation on Solid Surfaces

2.1 Introduction

2.2 Classical Nucleation Theory

2.2.1 Homogeneous Nucleation Rate

2.2.1.1 Homogeneous Nucleation of Water Droplets and Ice from Vapor

2.2.1.2 Homogeneous Ice Nucleation in Supercooled Water

2.2.2 Heterogeneous Nucleation Rate

2.2.2.1 Heterogeneous Water Nucleation on Solid Surfaces

2.2.3 Spatial Control of Water Nucleation on Nanoengineered Surfaces

2.2.4 Heterogeneous Ice Nucleation in Supercooled Water

2.3 Prospects

2.4 Summary

Acknowledgement

References

Notes

3 Physics of Ice Nucleation and Growth on a Surface

3.1 Ice Nucleation

3.2 Ice Growth

3.2.1 Scenario I: Droplet in an Environment without Airflow

3.2.2 Scenario II: Droplet in an Environment with External Airflow

3.3 Ice Bridging Phenomenon

3.4 Summary

References

Notes

4 Condensation Frosting

4.1 Introduction

4.2 Why Supercooled Condensation?

4.3 Inter-Droplet Freeze Fronts

4.4 Dry Zones and Anti-Frosting Surfaces

4.5 Summary and Future Directions

References

Note

5 The Role of Droplet Dynamics in Condensation Frosting

5.1 Introduction

5.2 Nucleation

5.3 Growth

5.4 Coalescence and Sweeping

5.5 Regeneration or Re-Nucleation

5.6 Inception of Freezing

5.7 Freezing Front Propagation

5.8 Ice Bridging

5.9 Frost Growth and Densification

5.10 Concluding Discussion

Acknowledgments

References

Note

6 Defrosting Properties of Structured Surfaces

6.1 Introduction: Defrosting on Smooth Surfaces

6.2 Defrosting Heat Exchangers

6.3 Dynamic Defrosting on Micro-Grooved Surfaces

6.4 Dynamic Defrosting on Liquid-Impregnated Surfaces

6.5 Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces

6.6 Summary and Future Directions

References

Note

7 On the Relationship between Surface Free Energy and Ice Adhesion of Flat Anti-Icing Surfaces

7.1 Introduction

7.2 Types of Ice Formation. 7.2.1 Ice Formation from Supercooled Drops on a Surface

7.2.2 Frost Formation from the Existing Humidity in the Medium

7.3 Work of Adhesion, Wettability and Surface Free Energy

7.4 Factors Affecting Ice Adhesion Strength and its Standardization

7.5 Effect of Water Contact Angle and Surface Free Energy Parameters on Ice Adhesion Strength

7.6 Summary

References

Note

8 Metrology of Ice Adhesion

8.1 Theory of Ice Adhesion to a Surface

8.2 Centrifugal Force Method

8.3 Peak Force Method

8.4 Tensile Force Method

8.5 Standard Procedure for Ice Adhesion Measurement

8.6 Summary

References

Note

9 Tensile and Shear Test Methods for Quantifying the Ice Adhesion Strength to a Surface

Glossary

9.1 Introduction

9.2 About Ice, Impact Ice, and Ice Adhesion Tests

9.2.1 Relationship between Wettability and Ice Adhesion

9.2.2 A Simple Picture of Condition-Dependent Ice Growth

9.2.3 Factors Affecting Ice Adhesion Strength

9.3 Review of Ice Adhesion Test Methods

9.3.1 Shear Tests

9.3.1.1 Pusher and Lap Shear Tests

9.3.1.2 Spinning Test Rigs

9.3.1.3 Vibrating Cantilever Tests

9.3.2 Tensile Tests

9.4 Prospects

9.5 Summary

Acknowledgements

References

Notes

10 Comparison of Icephobic Materials through Interlaboratory Studies

10.1 Introduction

10.2 Icephobicity and Anti-Icing Surfaces

10.3 Ice Formation and Properties

10.3.1 Definitions of Ice

10.3.2 The Effect of Ice Type on Ice Adhesion Strength

10.4 Testing Ice Adhesion

10.4.1 Description of Selected Common Ice Adhesion Tests

10.4.2 Adhesion Reduction Factor

10.4.3 Effect of Experimental Parameters

10.4.3.1 Temperature

10.4.3.2 Ice Sample Size

10.4.3.3 Force Probe Placement and Loading Rate

10.5 Comparing Low Ice Adhesion Surfaces with Interlaboratory Tests

10.5.1 The Need for Comparability

10.5.2 Interlaboratory Test Procedure

10.5.3 Interlaboratory Test Results

10.5.4 Properties of a Future Standard and Reference

10.6 Concluding Remarks

References

Notes

11 Mechanisms of Surface Icing and Deicing Technologies

11.1 A Brief Description of Icing and Ice Adhesion

11.2 Examples of Mathematical Modeling of Icing on Various Static or Moving Surfaces

11.3 New Applications of Common Deicing Compounds

11.4 Plasma-Based Deicing Systems

11.5 Functional Super (Hydrophilic) or Wettable Polymeric Coatings to Resist Icing

11.6 Nanoscale Carbon Coatings with/without Resistive Heating

11.7 Antifreeze Proteins

11.8 Summary and Perspectives

References

Note

12 Icephobicities of Superhydrophobic Surfaces

12.1 Introduction

12.2 Anti-Icing Property of Superhydrophobic Surfaces under Dynamic Flow Conditions. 12.2.1 Preparation of Superhydrophobic Surfaces

12.2.2 Anti-Icing Test under Dynamic Flow Conditions

12.2.3 Results and Discussion

12.3 Analytical Models of Depinning Force on Superhydrophobic Surfaces

12.4 Analytical Models of Contact Angles on Superhydrophobic Surfaces

12.5 De-Icing Property of Superhydrophobic Surfaces under Static Conditions. 12.5.1 De-Icing Test under Static Conditions

12.5.2 Results and Discussion

12.6 Conclusions

Acknowledgments

References

Note

13 Ice Adhesion and Anti-Icing Using Microtextured Surfaces

13.1 Introduction. 13.1.1 Background

13.1.2 State-of-the-Art

13.2 Microtextured Surfaces: Wetting Characteristics and Anti-Icing Properties. 13.2.1 Wetting on Microtextured Surfaces

13.2.2 Wetting and Icephobic Surfaces

13.2.3 Ice Adhesion to Microtextured Surfaces

13.3 Measurement Methods for Ice Adhesion

13.3.1 Force Measurement Techniques

13.3.2 Contact Area Measurements

13.3.3 Measurement Variance and Error

13.4 Fabrication Methods for Microtextured Surfaces

13.4.1 Micro/Nanoparticle Coatings

13.4.2 Chemical Etching

13.4.3 Laser Ablation Techniques

13.4.4 Embossing Techniques

13.5 Microtextured Surfaces and Anti-Icing Applications

13.5.1 Solar

13.5.2 Wind

13.5.3 Aircraft

13.5.4 HVAC

13.6 Conclusion and Future Outlook

Acknowledgments

References

Note

14 Icephobic Surfaces: Features and Challenges

14.1 Introduction

14.2 Features and Challenges in Rational Fabrication of Icephobic Surfaces

14.3 Wettability

14.4 Surface Engineering

14.4.1 Repelling Impacting Droplets. 14.4.1.1 Drop Impact Characterization

14.4.1.2 Enhancing Surface Resistance against Drop Impact. 14.4.1.2.1 Pore Size

14.4.1.2.2 Surface Texture

14.4.1.2.3 Surface Elasticity

14.4.1.2.3.1 Surface Flexibility

14.4.1.2.3.2 Surface Softness

14.4.1.2.4 Thermal Properties

14.4.1.3 Additional Factors Affecting Supercooled Droplet Impacts. 14.4.1.3.1 Ambient Pressure

14.4.2 Freezing Delay

14.4.2.1 Delaying Freezing of a Droplet

14.4.2.1.1 Surface Texturing

14.4.2.1.2 Smooth Surfaces

14.4.2.2 Delaying Frost Formation

14.4.2.2.1 Surface Engineering to Delay Frost Formation. 14.4.2.2.1.1 Surface Morphology

14.4.2.2.1.2 Thermal Conductivity

14.4.2.2.1.3 Surface Softness

14.4.3 Ice Adhesion. 14.4.3.1 Theory

14.4.3.1.1 Work of Adhesion

14.4.3.1.2 Crack Formation

14.4.3.2 Strategies to Lower Ice Adhesion Strength

14.4.3.2.1 Wettability Tuning

14.4.3.2.2 Stiffness Tuning

14.4.3.2.2.1 Facilitating Crack Formation

14.4.3.2.3 Toughness Tuning

14.4.3.2.4 Slippery Surfaces

14.4.3.2.4.1 Liquid Infused Surfaces

14.4.3.2.4.2 Self-Hydrating Surfaces

14.4.3.2.4.3 Hybrid Interfaces

14.5 De-Icing

14.5.1 Electro- and Photo-Thermal

14.5.2 Magneto- and Photo-Thermal

14.6 Summary

References

Note

15 Bio-Inspired Anti-Icing Surface Materials

Glossary of Symbols

Glossary of Abbreviations

15.1 Introduction

15.2 Depressing Ice Nucleation

15.3 Retarding Ice Propagation

15.4 Reducing Ice Adhesion

15.5 All-in-One Anti-Icing Materials

15.6 Summary and Conclusions

References

Note

16 Testing the Durability of Anti-Icing Coatings

16.1 Introduction

16.2 Icing/Deicing Tests and Ice Types

16.2.1 Evaluating the Durability of Surfaces

16.2.2 Rough Superhydrophobic Surfaces and their Durability

16.2.3 Smooth Hydrophobic Surfaces and their Durability

16.3 Concluding Remarks

References

Note

17 Durability Assessment of Icephobic Coatings

17.1 Introduction

17.2 UV-Induced Degradation

17.2.1 Autocatalytic Photo-Induced Degradation Mechanism

17.2.2 Factors Affecting UV Resistance

17.2.3 UV-Induced Photo-Oxidation Prevention

17.3 Hydrolytic Degradation of Coatings

17.4 Atmospheric Conditions and Changes in Coating Performance

17.5 Mechanical Durability of Coating

17.5.1 Cracking

17.5.2 Erosion of Coatings

17.5.3 Abrasion

17.6 Methods for Durability Assessment of an Icephobic Coating

17.7 Summary

References

Note

18 Experimental Investigations on Bio-Inspired Icephobic Coatings for Aircraft Inflight Icing Mitigation

18.1 Introduction About Aircraft Icing Phenomena

18.2 Impact Icing Pertinent to Aircraft Icing vs. Conventional Frosting or Static Icing

18.3 State-of-the-Art Bio-Inspired Icephobic Coatings

18.3.1 Superhydrophobic Surfaces with Micro-/Nano-Scale Textures

18.3.2 Slippery Liquid-Infused Porous Surfaces

18.3.3 Icephobic Soft Materials with Ultra-Low Ice Adhesion Strength and Good Mechanical Durability

18.4 Comparison of Ice Adhesion Strengths of Different Bio-Inspired Icephobic Coatings

18.5 Durability of the Bio-Inspired Icephobic Coatings under High-Speed Droplet Impacting

18.6 Icing Tunnel Testing to Evaluate the Effectiveness of the Icephobic Coatings for Impact Icing Mitigation

18.7 Summary

Acknowledgments

References

Note

19 Effect of and Protection from Ice Accretion on Aircraft

Glossary

19.1 Introduction

19.2 Fundamental Icing Parameters

19.2.1 Droplet Diameter

19.2.2 Liquid Water Content

19.2.3 Ambient Icing Temperature

19.3 Types of Ice on Aircraft

19.3.1 Rime Ice

19.3.2 Glaze Ice

19.3.3 Mixed Ice

19.4 Aircraft Icing Effects

19.4.1 Iced Aerodynamics. 19.4.1.1 Drag Rise

19.4.1.2 Lift Reduction

19.4.1.3 Moment Variation

19.4.1.4 Separation Bubble Formation

19.4.1.5 Boundary Layer Thickening

19.4.2 Iced Flight Mechanics

19.4.2.1 Flight Performance Disruption

19.4.2.2 Stability and Control Degradation

19.5 Sensing of and Protection from Aircraft Icing. 19.5.1 Sensing of Ice Accretion

19.5.2 De-Icing and Anti-Icing

19.5.3 Envelope Protection

19.5.4 Control Reconfiguration

19.6 Summary

Funding and Acknowledgement

References

Notes

20 Numerical Modeling and Its Application to Inflight Icing

20.1 Introduction

20.2 Aircraft Icing. 20.2.1 Icing Environment. 20.2.1.1 Cloud Formation

20.2.1.2 Cloud Classification

20.2.1.2.1 High Clouds

20.2.1.2.2 Middle Clouds

20.2.1.2.3 Low Clouds

20.2.1.2.4 Clouds of Vertical Development

20.2.1.3 Icing Cloud

20.2.1.3.1 Stratiform Clouds

20.2.1.3.2 Cumuliform Clouds

20.2.1.4 Icing Envelope

20.2.2 Icing Mechanism. 20.2.2.1 Fundamentals of Icing. 20.2.2.1.1 Ice Formation Process

20.2.2.1.2 Icing Parameters

20.2.2.2 Characterization of Ice Shape. 20.2.2.2.1 Rime Ice

20.2.2.2.2 Glaze Ice

20.2.2.2.3 Mixed Ice

20.2.2.3 Critical Issues in Icing Physics

20.2.2.3.1 Surface Roughness

20.2.2.3.2 Supercooled Large Droplet (SLD)

20.3 Numerical Technique for Inflight Icing

20.3.1 Composition of the Inflight Icing Code

20.3.2 Flow Analysis Solver

20.3.2.1 Inviscid Flow Solver

20.3.2.1.1 Boundary Layer Code

20.3.2.2 Reynolds-Averaged Navier-Stokes (RANS) Equation

20.3.2.2.1 Turbulence Modeling

20.3.2.2.2 Surface Roughness Modeling

20.3.3 Droplet Trajectory Module

20.3.3.1 Lagrangian Approach

20.3.3.2 Eulerian Approach

20.3.4 Thermodynamic Module

20.3.4.1 Messinger Model

20.3.4.2 Extended Messinger Model (Stefan Equation)

20.3.4.3 Shallow Water Icing Model (SWIM)

20.3.5 Ice Growth Module

20.3.6 Application of the Numerical Simulation

20.3.6.1 2D Airfoil

20.3.6.2 3D DLR-F6 Configuration

20.3.6.3 Rotorcraft Fuselage

20.4 Numerical Simulation of Icing Protection System (IPS)

20.4.1 IPS

20.4.2 Simulation for IPS

20.4.3 Thermal IPS Simulation Analysis

20.4.3.1 Electro-Thermal IPS Simulation

20.4.3.2 Water Film Analysis

20.5 Numerical Issues in the Inflight Icing Code. 20.5.1 Analysis of the Surface Roughness

20.5.2 Analysis of the Transition in the Boundary Layer Problem

20.5.3 Analysis of the Rotor Blade Icing Problem

20.5.4 Analysis of the Uncertainty Qualification (UQ)

20.6 Summary

References

Note

Index

Also of Interest. Checkrelate titlesout fromtheseScrivenerpublishedPublishingand forthcoming

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

(1.28)

Eberle et al. (2014) derive closed-form expressions for the nucleation temperature, TN, and the median freezing time, tmedian, by equating Equation 1.28 to 0.5 [78].

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Ice Adhesion
Подняться наверх