2D Monoelements

2D Monoelements
Автор книги: id книги: 1877913     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 20118,1 руб.     (219,41$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119655299 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

2D Monoelements: Properties and Applications explores the challenges, research progress and future developments of the basic idea of two-dimensional monoelements, classifications, and application in field-effect transistors for sensing and biosensing. The thematic topics include investigations such as: Recent advances in phosphorene The diverse properties of two-dimensional antimonene, of graphene and its derivatives The molecular docking simulation study used to analyze the binding mechanisms of graphene oxide as a cancer drug carrier Metal-organic frameworks (MOFs)-derived carbon (graphene and carbon nanotubes) and MOF-carbon composite materials, with a special emphasis on the use of these nanostructures for energy storage devices (supercapacitors) Two-dimensional monoelements classification like graphene application in field-effect transistors for sensing and biosensing Graphene-based ternary materials as a supercapacitor electrode Rise of silicene and its applications in gas sensing

Оглавление

Группа авторов. 2D Monoelements

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Monoelements. Properties and Applications

Preface

1. Phosphorene: A 2D New Derivative of Black Phosphorous

1.1 Introduction

1.2 Pristine 2D BP

1.2.1 Synthesis and Characterization

1.2.1.1 Top-Down Approaches

1.2.1.2 Bottom-Up Methods

1.2.1.3 Geometric Structure and Raman Spectroscopy

1.2.2 Physical Properties. 1.2.2.1 Anisotropic Eectronic Behavior

1.2.2.2 Optical Properties

1.2.2.3 Elastic Parameters

1.2.3 Applications

1.2.3.1 Gas Sensors

1.2.3.2 Battery Applications

1.2.3.3 FETs

1.3 Phosphorene Oxides

1.3.1 Challenges: Degradation of Phosphorene

1.3.1.1 Light Exposure

1.3.1.2 Phosphorene vs Air

1.3.1.3 Functionalized Phosphorene

1.3.2 Half-Oxided Phosphorene

1.3.2.1 Electronic Structure

1.3.2.2 Optical Response

1.3.2.3 Strain Effect

1.3.3 Surface Oxidation on Phosphorene

1.3.3.1 Optoelectronic Features

1.3.3.2 Stress vs Strain

1.3.3.3 Thermal Conductivity

1.4 Conclusion

Acknowledgment

References

2. Antimonene: A Potential 2D Material

2.1 Introduction

2.2 Fundamental Characteristics. 2.2.1 Structure

2.2.2 Electronic Band Structure

2.3 Experimental Preparation. 2.3.1 Mechanical Exfoliation

2.3.2 Liquid Phase Exfoliation

2.3.3 Epitaxial Growth

2.3.4 Other Methods

2.4 Applications of Antimonene. 2.4.1 Nonlinear Optics

2.4.2 Optoelectronic Device

2.4.3 Electrocatalysis

2.4.4 Energy Storage

2.4.5 Biomedicine

2.4.6 Magneto-Optic Storage

2.5 Conclusion and Outlook

References

3. Synthesis and Properties of Graphene-Based Materials

3.1 Introduction

3.2 Applications

3.3 Structure

3.3.1 Graphene-Related Materials

3.3.2 Synthesis Techniques

3.3.3 Mechanical Exfoliation of Graphene Layers

3.3.4 Chemical Vapor Deposition of Graphene Layers

3.3.5 Hummer Method of Graphene

3.3.6 Plasma-Enhanced Chemical Vapor Deposition of Graphene Layers

3.4 Physical Properties. 3.4.1 Thermal Stability

3.4.2 Electronic Properties

3.5 Conclusions

References

4. Theoretical Study on Graphene Oxide as a Cancer Drug Carrier

4.1 Introduction

4.2 Molecular Interaction of Biomolecules and Graphene Oxide

4.2.1 Molecular Interaction of DNA With Graphene Oxide

4.2.2 Molecular Interaction of Protein With Graphene Oxide

4.3 Computational Method

4.4 Results and Discussion

4.4.1 Binding Behavior Between Graphene Oxide With Cancer Drugs (5-Flourouracil, Ibuprofen, Camptothecine, and Doxorubicin)

4.5 Conclusion

References

5. High-Quality Carbon Nanotubes and Graphene Produced from MOFs for Supercapacitor Application

5.1 Introduction

5.1.1 The Basics of Metal Organic Frameworks (MOFs)

5.2 Carbonization of MOFs

5.2.1 Conversion of MOFs Into Carbon Nanotubes (CNTs)

5.2.2 MOFs Derived Graphene Like Carbon and Graphene-Based Composites

5.2.3 MOFs Precursors for the Preparation of Porous Carbon Nanostructures Other Than Graphene and CNTs

5.3 Effect of MOF Pyrolysis Temperature on Porosity and Pore Size Distribution

5.4 MOF Derived Carbon as Supercapacitor Electrodes

5.5 Conclusions and Perspectives

Acknowledgement

References

6. Application of Two-Dimensional Monoelements–Based Material in Field-Effect Transistor for Sensing and Biosensing

6.1 Introduction

6.1.1 Classification of 2D Monoelement (Xenes) in the Periodic Table

6.1.2 Group III

6.1.2.1 Borophene

6.1.2.2 Gallenene

6.1.3 Group IV. 6.1.3.1 Silicene

6.1.3.2 Germanene

6.1.3.3 Stanene

6.1.4 Group V. 6.1.4.1 Phosphorene

6.1.4.2 Arsenene

6.1.4.3 Antimonene

6.1.4.4 Bismuthene

6.1.5 Group VI. 6.1.5.1 Selenene

6.1.5.2 Tellurene

6.2 Field-Effect Transistor

6.2.1 Different Types of Recently Developed Field-Effect Transistors. 6.2.1.1 Field-Effect Transistors Based on Silicon

6.2.1.2 Field-Effect Transistors Based on Carbon Nanotube

6.2.1.3 Organic Field-Effect Transistors

6.2.1.4 Field-Effect Transistors Based on Graphene

6.3 Application of 2D Monoelements in Field-Effect Transistor for Sensing and Biosensing. 6.3.1 Biosensor

6.3.1.1 DNA Sensors

6.3.1.2 Protein Sensors

6.3.1.3 Glucose Sensor

6.3.1.4 Living Cell and Bacteria Sensors

6.3.2 Sensor

6.3.2.1 Gas Sensor

6.3.2.2 pH Sensor

6.3.2.3 Metal Ion and Other Chemical Sensors

6.4 Conclusions and Perspectives

References

7. Supercapacitor Electrodes Utilizing Graphene-Based Ternary Composite Materials

7.1 Introduction

7.2 Charge Storage Mechanism of a Supercapacitor Device

7.2.1 Design of a Supercapacitor Electrode

7.3 Graphene and its Functionalized Forms. 7.3.1 Graphene

7.3.2 Graphene Oxide

7.3.3 Reduced Graphene Oxide

7.4 Varieties of Graphene-Based Ternary Composite

7.4.1 Graphene-Conducting Polymer-Metal Oxide

7.4.1.1 Graphene-PEDOT-Metal Oxide

7.4.1.2 Graphene-PANI-Metal Oxide

7.4.1.3 Graphene-PPy-Metal Oxide

7.4.2 Graphene/Other Carbon/Conducting Polymer

7.4.3 Graphene/Other Carbon Material/Metal Oxide

7.4.4 Other Graphene-Based Ternary Materials

7.5 Conclusion and Future Perspectives

References

8. Graphene: An Insight Into Electrochemical Sensing Technology

Abbreviation Used

8.1 Introduction

8.2 Electronic Band Structure of Graphene

8.3 Electrochemical Influence of the Graphene Due to Doping Effect

8.4 Exfoliation of Graphite: Chemistry Behind Scientific Approach

8.5 Electrochemical Reduction of Oxidized Graphene

8.6 Spectroscopic Study of Graphene

8.7 Biotechnical Functionalization of Graphene

8.8 Graphene Technology in Sensors. 8.8.1 Glucose Sensors

8.8.2 DNA and Aptamer Sensors

8.8.3 Pollutant Sensors

8.8.4 Gas Sensors

8.8.5 Pharmaceutical Sensors and Antioxidant Sensors

8.9 Conclusion

Acknowledgements

References

Abbreviation Used for Tables and Figures

9. Germanene

9.1 Introduction

9.2 Structural Arrangements. 9.2.1 Elemental Structures

9.2.2 Decorated Structures

9.2.3 Composite Structures

9.3 Fundamental Properties of Germanene. 9.3.1 Quantum Spin Hall (QSH) Effect

9.3.2 Mechanical Properties

9.3.3 Thermal Properties

9.3.4 Optical Properties

9.4 Applications of Germanene. 9.4.1 Strain-Induced Self-Doping in Germanene

9.4.2 Battery Applications

9.4.3 Electronic Devices

9.4.4 Catalysis

9.4.5 Optoelectronic and Luminescence Applications

9.5 Conclusions

References

10. 2D Graphene Nanostructures for Biomedical Applications

10.1 Introduction

10.1.1 Synthesis Routes of Graphene

10.1.2 Graphene and its Derivatives

10.2 Applications of Graphene in Biomedicine. 10.2.1 Tissue Engineering

10.2.1.1 Cartilage Tissue Engineering

10.2.2 Bone Tissue Engineering. 10.2.2.1 Methods of Fracture Repair

10.2.2.2 Graphene Used in Bone Tissue Engineering

10.2.3 Gene Delivery

10.2.4 Cancer Therapy

10.2.5 Genotoxicity

10.2.6 2D Application of Graphene in Biosensing

10.2.7 Prosthetic Implants

10.3 Conclusion

References

11. Graphene and Graphene-Integrated Materials for Energy Device Applications

11.1 Introduction

11.1.1 Anode Materials for Electrodes

11.1.2 Cathode Materials for Electrodes

11.2 Graphene-Integrated Electrodes for Lithium-Ion Batteries (LIBs)

11.2.1 The Working of LIBs

11.2.2 Graphene-Integrated Cathodes

11.2.2.1 Graphene/LiFePO4 as Cathode

11.2.2.2 Graphene/LiMn2O4 as Cathode

11.2.2.3 Graphene-Layered Cathode Material

11.2.3 Graphene-Integrated Anodes

11.2.3.1 Graphene/Li4Ti5O12 as Anode

11.2.3.2 Graphene/Si or Ge as Anode

11.2.3.3 Graphene/Metal Oxides as Anodes. 11.2.3.3.1 Transition Metal Oxides

11.2.3.3.2 Tin Oxides

11.2.3.3.3 Titanium Oxides

11.2.3.4 Graphene/Sulfides as Anodes

11.3 Graphene-Integrated Nanocomposites for Supercapacitors (SCs)

11.3.1 Working Mechanism of Supercapacitors. 11.3.1.1 Electrochemical Double Layer Capacitors (EDLC)

11.3.1.2 Pseudo-Capacitors

11.3.1.3 Hybrid Supercapacitors

11.3.2 Graphene-Integrated Supercapacitors (GSCs)

11.3.2.1 Graphene/Organic Material Nanocomposites

11.3.2.2 Graphene/Conducting Polymer Nanocomposites

11.3.2.3 Graphene/Metal Oxide Nanocomposites

11.4 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

4. Liu, Y., Qiu, Z., Carvalho, A., Bao, Y., Xu, H., Tan, S.J., Lu, J., Gate-tunable giant stark effect in few-layer black phosphorus. Nano Lett., 17, 3, 1970, 2017.

5. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Zandbergen, H.W., Isolation and characterization of few-layer black phosphorus. 2D Mater., 1, 2, 025001, 2014.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу 2D Monoelements
Подняться наверх