Biopolymers for Biomedical and Biotechnological Applications

Biopolymers for Biomedical and Biotechnological Applications
Автор книги: id книги: 1878841     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18462,4 руб.     (201,16$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527818303 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book highlights the technical and methodological advancements in introducing biopolymers, their study and promoted applications. Organized in four parts, the book provides initially a general overview over biopolymers, properties and biocompatibility and continues with dedicated parts on ?Biopolyemrs through Bioengineering and Biotechnology Venues?, ?Polymeric Biomaterials with wide applications? and ?Biopolymers for Specific Applications?.

Оглавление

Группа авторов. Biopolymers for Biomedical and Biotechnological Applications

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Biopolymers for Biomedical and Biotechnological Applications

Copyright

1 Advances in Biocompatibility: A Prerequisite for Biomedical Application of Biopolymers

1.1 Introduction

1.2 Biocompatibility Evaluation of Biopolymeric Materials and Devices

1.3 Using a Risk‐Based Approach to Biocompatibility

1.3.1 Chemistry of Biopolymers and Risk

1.3.2 Chemistry Screening of Biopolymers

1.4 Specific Biological Endpoint Evaluations

1.4.1 Cytotoxicity

1.4.2 Systemic Toxicity (Acute, Subacute, Subchronic, and Chronic)

1.4.3 Implantation

1.5 Conclusion

References

2 Advanced Microbial Polysaccharides

2.1 Introduction

2.2 Functional Properties and Applications of Microbial Polysaccharides

2.3 Commercially Relevant Microbial Polysaccharides: Established Uses and Novel/Prospective Applications

2.3.1 Pullulan

2.3.2 Scleroglucan

2.3.3 Xanthan Gum

2.3.4 Dextrans

2.3.5 Curdlan

2.3.6 Gellan Gum

2.3.7 Levan

2.3.8 Hyaluronic Acid

2.4 Hydrogels Based on Microbial Polysaccharides

2.5 Bionanocomposites Based on Microbial Polysaccharides

2.6 Bioactive Polysaccharides from Microalgae: An Emerging Area

2.6.1 Polysaccharide‐Producing Microalgae

2.6.2 Biological Activity and Potential Applications

2.6.2.1 Antiviral Activity

2.6.2.2 Immunomodulatory, Anti‐inflammatory, and Anticancer Activities

Stimulation of Macrophage Response

Effect of Polysaccharides in T, B, D, and NK Cells

Antiproliferative and Direct Anticancer Potential

Anti‐inflammatory Activity

2.6.2.3 Anticoagulant and Antithrombotic Activity

2.6.2.4 Antioxidant Activity

2.6.2.5 Other Biological Properties

2.6.3 Commercialization Prospects

2.7 Applications of Chitinous Polymers. 2.7.1 Chitin, Chitosan, and Chitinous Polysaccharides

2.7.2 Properties of Chitinous Polysaccharides

2.7.3 Applications of Chitinous Polysaccharides

2.7.3.1 Biomedical Applications

2.7.3.2 Pharmaceutical Applications

2.7.3.3 Food Applications

2.7.3.4 Other Applications

2.8 Microbial Polysaccharides: A World of Opportunities

Acknowledgments

References

3 Microbial Cell Factories for Biomanufacturing of Polysaccharides

3.1 Introduction

3.2 Prominent Microbial Polysaccharides and Their Properties and Applications

3.2.1 Xanthan and Acetan

3.2.2 Succinoglycan and Galactoglucan

3.2.3 Sphingan Polysaccharides

3.2.4 Pullulan

3.2.5 Cellulose and Curdlan

3.2.6 Alginates

3.2.7 Hyaluronic Acid or Hyaluronate

3.2.8 Dextrans

3.2.9 Levan and Inulin

3.3 Biosynthesis Pathways of Bacterial Polysaccharides

3.3.1 Genetic Background Required for Biosynthesis of Polysaccharides in Bacteria

3.3.2 Production of Active Precursor, Polymerization, and Polysaccharide Modifications

3.3.3 Regulatory Pathways and Posttranslational Modifications

3.4 Strategies for Engineering Cell Factories

3.4.1 Enhancement of Productivity upon the Energetic State of the Cell and Metabolites

3.4.2 Genetic and Metabolic Engineering of Cell Factories

3.4.3 Strategies for Optimizing Physicochemical Properties of Polysaccharides

3.4.4 Recombinant Production of Polysaccharides and Tailor‐Made Products

3.5 Conclusion and Future Perspective

Acknowledgments

References

4 Exploitation of Exopolysaccharides from Lactic Acid Bacteria

4.1 Introduction. 4.1.1 Lactic Acid Bacteria

4.1.2 Exopolysaccharides

4.1.3 Importance of PS Produced by LAB

4.2 Homo‐PS. 4.2.1 Biosynthesis

4.2.2 Composition and Structure

4.2.3 Instability of Homo‐PS Production

4.3 Hetero‐PS. 4.3.1 Biosynthesis

4.3.2 Monosaccharides Composition of Hetero‐PS

4.3.3 Yield of Hetero‐PS

4.3.4 Instability of Hetero‐PS Production

4.4 Prebiotic Activity

4.4.1 Commercial Prebiotic Oligosaccharides

4.4.2 Prebiotic Polysaccharides

4.4.3 Prebiotics in Japanese FOSHU

4.4.4 Prebiotics Produced by LAB

4.5 Conclusion

References

5 Nanocellulose: A New Biopolymer for Biomedical Application

5.1 Trends of Biobased Polymers in Biomedical Application

5.1.1 Introduction to Biomedical Engineering

5.1.2 Overview of Biobased Materials for Biomedical Applications. 5.1.2.1 Biomaterials: A Definition

5.1.2.2 Biobased Polymers

5.1.2.3 Cellulose as a Biomaterial

5.2 Nanocellulose: Production, Characterization, Application, and Commercial Aspects

5.2.1 Isolation and Characterization of Nanocellulose Materials

5.2.1.1 Cellulose Nanocrystals

5.2.1.2 Cellulose Nanofibrils

Cellulose Nanofibril Production Through Enzymatic Pretreatment

Cellulose Nanofibril Production Through TEMPO‐Mediated Oxidation Pretreatment

5.2.1.3 Bacterial Nanocellulose (BNC)

5.2.2 Characterization of Cellulosic Nanomaterials (CNMs)

5.2.3 Industrialization of Nanocellulose: First and Upcoming Applications

5.2.4 Health and Toxicology: A Concern for CNM Development in Biomedical Field

5.2.5 Cellulose Nanofibrils and Medical Applications

5.3 Conclusions and Perspectives

References

6 Advances in Mucin Biopolymer Research: Purification, Characterization, and Applications

6.1 Introduction

6.2 Mucin Sources and Purification Process

6.3 Structure–Function Relation of Mucins

6.4 Characterizing Mucins and Mucin‐Based Materials

6.5 Biomedical Applications of Purified Mucins

6.5.1 Eye Drops or Contact Lens Coatings

6.5.2 Mouth Sprays

6.5.3 Artificial Joint Fluids

6.5.4 Coatings of Medical Devices

6.5.5 Components of Hydrogels for Drug Delivery

6.5.6 Molecular Standards for Lab Tests with Clinical Mucus Samples

6.6 Outlook: Engineered Mucins and Mucin‐Mimetic Polymers

Acknowledgments

References

7 Advances in the Synthesis of Fibrous Proteins and Their Applications

7.1 Introduction

7.2 Synthesis, Structure, and Characterizations of Fibrous Protein Materials

7.2.1 Synthesis Methods

7.2.2 Structure

7.2.3 Characterizations

7.3 Applications of Fibrous Protein Materials

7.3.1 Bone Tissue Engineering

7.3.2 Biomedical Engineering

7.3.3 Sensors and Biosensors

7.3.4 Nanodevices

7.3.5 Energy Application

7.3.6 Environmental Application

7.4 Conclusions

Acknowledgments

References

8 Microbial Polyhydroxyalkanoates (PHAs): From Synthetic Biology to Industrialization

8.1 Introduction

8.2 Synthetic Biology for Production of Kaneka PHBH. 8.2.1 Isolation of Bacterium Producing Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)

8.2.2 Material Properties of PHBH

8.2.3 Industrial PHBH Production Process

8.2.4 Molecular Breeding of PHBH‐Producing Bacteria

8.2.5 Precise Control of 3HHx Fraction by Genetic Modification of Ralstonia eutropha

8.2.6 Business Plan for Kaneka PHBH Industrialization

8.3 Synthetic Biology for Production of Medium‐Chain‐Length PHAs with Homogeneous Side‐Chain Lengths (Homo‐PHAs) 8.3.1 Copolymers Based on Medium‐Chain‐Length PHA Monomeric Constituents

8.3.2 Pathway Engineering for Homo‐PHA Production

8.3.3 Improved Microbial Production of Homo‐PHAs

8.3.4 Material Properties of Homo‐PHAs

8.3.5 Integrated Production Process of Homo‐PHAs from Renewable Feedstock

8.4 Synthetic Biology for Production of Lactate‐Based Polymers. 8.4.1 Creation of Lactate‐Polymerizing Enzyme (LPE)

8.4.2 Biosynthesis of Lactate‐Based Polymers

8.4.3 Integrated Production Process of Lactate‐Based Polymers from Renewable Feedstock

8.4.4 Biosynthesized Lactate‐Based Polymer Shows Superior Properties

8.5 Outlook

References

9 Natural and Synthetic Biopolymers in Drug Delivery and Tissue Engineering

9.1 Introduction

9.2 Synthetic and Natural Substrates

9.3 Applications of Natural and Synthetic Polypeptides. 9.3.1 Drug Delivery Vehicles

9.3.2 Targeting Agents

9.3.3 Cell‐Permeating Peptides

9.3.4 Peptides in Tissue Engineering and Regenerative Medicine

9.4 Applications of Polysaccharides. 9.4.1 Drug Delivery

9.4.2 Tissue Engineering and Regenerative Medicine

9.5 Conclusions and Future Outlook

References

10 Biopolymers in Regenerative Medicine: Overview, Current Advances, and Future Trends

10.1 Introduction

10.2 Biopolymer Scaffold Assembly

10.2.1 Hydrogel Biopolymer Scaffolds

10.2.2 Electrospinning of Biopolymer Scaffolds

10.2.3 Three‐Dimensional Printing of Biopolymer Scaffolds

10.3 Organ System Specific Biopolymer Scaffolds

10.3.1 Biopolymers for Musculoskeletal System Regeneration

10.3.1.1 Biopolymers for Bone Regeneration

10.3.1.2 Biopolymers for Cartilage Regeneration

10.3.1.3 Biopolymers for Ligament and Tendon Regeneration

10.3.2 Biopolymers for Cardiovascular System Regeneration

10.3.2.1 Biopolymers for Vascular Regeneration

10.3.2.2 Biopolymers for Cardiac Regeneration

10.4 Summary and Outlook

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Bernd H. A. Rehm

.....

In a rat subchronic study, if the worst‐case target population is adult women and the test rat weighs 500 g, the dose would be calculated as follows:

This approach would ensure an accurate exposure dose to the animal and would present a more clinically relevant evaluation for the risks of systemic toxicity for the device.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Biopolymers for Biomedical and Biotechnological Applications
Подняться наверх