Advances in Electric Power and Energy

Advances in Electric Power and Energy
Автор книги: id книги: 1885294     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13521,3 руб.     (125,19$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119480440 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A guide to the role of static state estimation in the mitigation of potential system failures With contributions from a noted panel of experts on the topic, Advances in Electric Power and Energy: Static State Estimation addresses the wide-range of issues concerning static state estimation as a main energy control function and major tool for evaluating prevailing operating conditions in electric power systems worldwide. This book is an essential guide for system operators who must be fully aware of potential threats to the integrity of their own and neighboring systems. The contributors provide an overview of the topic and review common threats such as cascading black-outs to model-based anomaly detection to the operation of micro-grids and much more. The book also includes a discussion of an effective mathematical programming approach to state estimation in power systems. Advances in Electric Power and Energy reviews the most recent developments in the field and: Offers an introduction to the topic to help non-experts (and professionals) get up-to-date on static state estimation Covers the essential information needed to understand power system state estimation written by experts on the subject Discusses a mathematical programming approach Written for electric power system planners, operators, consultants, power system software developers, and academics, Advances in Electric Power and Energy is the authoritative guide to the topic with contributions from experts who review the most recent developments.

Оглавление

Группа авторов. Advances in Electric Power and Energy

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

ADVANCES IN ELECTRIC POWER AND ENERGY. Static State Estimation

TO FRED C. SCHWEPPE, 1933–1988

ABOUT THE EDITOR

ABOUT THE CONTRIBUTORS

CHAPTER 1GENERAL CONSIDERATIONS

1.1 PRELUDE

1.2 DEFINING SSE

1.3 THE NEED FOR STATE ESTIMATION

1.4 STATIC STATE ESTIMATION IN PRACTICE

1.4.1 SE Performance Issues

1.4.2 Weights Assigned to Measurements

1.4.3 SE Availability Considerations

1.4.4 SE Solution Quality (Accuracy)

1.4.4.1 Metrics to Evaluate SE Solution Quality

1.4.4.2 Methods for Evaluating SE Solution Quality (Accuracy)

1.4.5 Using SE to Monitor External Facilities

1.4.6 SE Maintenance/Troubleshooting and Support Practices

1.5 APPLICATIONS THAT USE SE SOLUTION

1.5.1 Contingency Analysis

1.5.2 Power Flow (Online/Operator)

1.5.3 Locational Marginal Pricing

1.5.4 Security‐Constrained Economic Dispatch

1.5.5 Voltage Stability Assessment

1.5.6 Dynamic Stability Assessment

1.6 OVERVIEW OF CHAPTERS

REFERENCES

CHAPTER 2STATE ESTIMATION IN POWER SYSTEMS BASED ON A MATHEMATICAL PROGRAMMING APPROACH

2.1 INTRODUCTION

2.2 FORMULATION

Example 2.1 Traditional Formulation

2.3 CLASSICAL STATE ESTIMATION PROCEDURE

Example 2.2 Classical Solution Example

2.3.1 Bad Measurement Detection

Example 2.3 Bad Measurement Detection Example

2.3.2 Identification of Erroneous Measurements

Example 2.4 Bad Measurement Identification Example

2.4 MATHEMATICAL PROGRAMMING SOLUTION

Example 2.5 Mathematical Programming Problem

2.5 ALTERNATIVE STATE ESTIMATORS

2.5.1 Weighted Least of Squares

2.5.1.1 WLS General Formulation

2.5.2 Weighted Least Absolute Value

2.5.2.1 LAV General Formulation

2.5.2.2 LAV Mathematical Programming Formulation

2.5.3 Quadratic‐Constant Criterion

2.5.3.1 QC General Formulation

2.5.3.2 QC Mathematical Programming Formulation

2.5.4 Quadratic‐Linear Criterion

2.5.4.1 QL General Formulation

2.5.4.2 QL Mathematical Programming Formulation

2.5.5 Least Median of Squares

2.5.5.1 LMS General Formulation

2.5.5.2 LMS Mathematical Programming Formulation

2.5.6 Least Trimmed of Squares

2.5.6.1 LTS General Formulation

2.5.6.2 LTS Mathematical Programming Formulation

2.5.7 Least Measurements Rejected

2.5.7.1 LMR General Formulation

2.5.7.2 LMR Mathematical Programming Formulation

2.5.8 Formulation Overview

2.5.9 Illustrative Example

2.5.10 Case Study

2.5.10.1 Estimation Assessment

2.5.11 Results

2.5.11.1 Performance Analysis: Bad Data

2.5.12 Conclusions

REFERENCES

CHAPTER 3SYSTEM STRESS AND CASCADING BLACKOUTS

3.1 INTRODUCTION

3.2 CASCADING BLACKOUTS AND PREVIOUS WORK. 3.2.1 Cascading Blackouts

3.2.2 Typical Events

3.2.3 Prior Work on Blackouts

3.3 PROBLEM STATEMENT AND APPROACH. 3.3.1 Diagnosis of the Cascading Blackout Problem [19]

3.3.2 An Approach to Blackouts: Focus on Stress

3.3.3 Cascading Failure Networks

3.3.4 Stress Metrics

3.4 DFAXes, VULNERABILITY, AND CRITICALITY METRICS

3.4.1 DFAX Matrix

3.4.2 Vulnerability and Criticality

3.4.3 Rank and Degree

3.5 VALIDITY OF METRICS. 3.5.1 Proof of Validity of Metrics

3.5.2 Examples of Metrics

3.5.3 What Makes Metrics Valid and Useful

3.5.4 Why the Vulnerability and Criticality Metrics Are Valid and Useful

3.6 STUDIES WITH METRICS

3.6.1 Line Outage Distribution Factor Properties

3.6.2 Eastern Interconnection Study [19]

3.6.3 National System of Peru [19]

3.6.4 Western Interconnection of North America [26]

3.6.5 Tipping Points

3.6.6 Pre‐Blackout Stress

3.7 SUMMARY

3.8 APPLICATION OF STRESS METRICS

3.9 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

NOTES

CHAPTER 4MODEL‐BASED ANOMALY DETECTION FOR POWER SYSTEM STATE ESTIMATION

4.1 INTRODUCTION

4.2 CYBERATTACKS ON STATE ESTIMATION

4.2.1 State of the Art: Literature Survey

4.2.1.1 Cyberattacks on Analog Measurements

4.2.1.2 Cyberattacks on Topology Measurements

4.3 ATTACK‐RESILIENT STATE ESTIMATION

4.3.1 Attack Prevention

4.3.1.1 Measurement Design

4.3.1.1.1 Protecting Critical Measurements

4.3.1.1.2 MTD‐Based State Estimation

4.3.2 Attack Detection/Mitigation

4.3.2.1 Bad Data Detection

4.3.2.2 Model‐Based Anomaly Detection

4.3.2.3 Dynamic State Estimation

4.4 MODEL‐BASED ANOMALY DETECTION

4.4.1 Overall Methodology

4.4.2 Detailed Workflow

4.4.3 Case Study and Performance Evaluation on IEEE 14‐Bus System

4.4.3.1 System Model

4.4.3.2 Experimental Setup and Parameters

4.4.3.3 Illustrative Example for an Execution Interval

4.4.3.4 Detecting Stealthy False Data Injection Attacks

4.4.3.5 False Positive Rate (FPR) and True Positive Rate (TPR) Analysis

4.5 CONCLUSIONS

REFERENCES

CHAPTER 5PROTECTION, CONTROL, AND OPERATION OF MICROGRIDS

Acronyms

5.1 PRELUDE

5.2 INTRODUCTION

5.3 STATE OF THE ART IN MICROGRID PROTECTION AND CONTROL. 5.3.1 Present Protection Methods and Limitations

5.3.2 Performance of Legacy Protection Functions Applied to mGrids

Method 1: Legacy Distance Protection

Method 2: Legacy Line Differential Protection

Bolted Internal Fault Case

High Impedance Internal Fault Case

Method 3: Adaptive Protection Scheme with Microgrid Central Protection Unit (MCPU)

Step 1: Calculate the Settings of Any Relay

Step 2: Coordination Consideration of Relays

Method 4: Differential Energy‐Based Protection

Step 1: Calculate the Spectral Energy of the Interested Current

Step 2: Calculate the Differential Spectral Energy of Currents Between Two Terminals

Step 3: Compare the Differential Energy to the User‐Defined Threshold

Case 1: Grid‐Connected Mode

Case 2: Islanded Mode

5.3.3 Present Control Methods and Limitations

Case 1: HIGH‐VOLTAGE NETWORK

Method 1

Method 2

Case 2: Low‐Voltage Network

Limitations

5.4 EMERGING TECHNOLOGIES

Method 5: Dynamic State Estimation‐Based Protection (EBP)

Step 1: Build High‐Fidelity Dynamic Model of the Circuit Under Protection

Step 2: Calculate Confidence Level

Case 1

Case 2

5.4.1 Adaptive Setting‐Less Protection

5.4.2 Real‐Time Operation by the DERMS

5.5 TEST CASE FOR DDSE

5.5.1 Formulation of Measurement Models

5.5.2 Static State Estimation and Performance Evaluation

5.5.3 Test Scenarios

5.6 TEST RESULTS. 5.6.1 Test Case 1

5.6.2 Test Case 2

5.7 TEST CASE FOR ADAPTIVE SETTING‐LESS PROTECTION

5.7.1 Induction Machine Component Model

5.7.2 State Estimation Formulation

5.7.3 Test Scenarios

5.7.4 Test Results and Observation

5.8 CONCLUSIONS

REFERENCES

CHAPTER 6PSSE REDUX: CONVEX RELAXATION, DECENTRALIZED, ROBUST, AND DYNAMIC SOLVERS

6.1 INTRODUCTION

6.2 POWER GRID MODELING

6.3 PROBLEM STATEMENT

6.3.1 Weighted Least Squares Formulation

6.3.2 Cramér–Rao Lower Bound Analysis

Proposition 6.1

6.3.3 Gauss–Newton Iterations

6.3.4 Semidefinite Relaxation

Proposition 6.2

6.3.5 Penalized Semidefinite Relaxation

6.3.6 Feasible Point Pursuit

6.3.7 Synchrophasors

6.4 DISTRIBUTED SOLVERS

6.4.1 Distributed Linear Estimator

6.4.2 Distributed SDR‐Based Estimator

Proposition 6.3

6.5 ROBUST ESTIMATORS AND CYBERATTACKS

6.5.1 Bad Data Detection and Identification

6.5.2 Observability and Cyberattacks

Definition 6.1

Definition 6.2

6.6 POWER SYSTEM STATE TRACKING

6.6.1 Model‐Free State Tracking via Online Learning

6.6.2 Model‐Based State Tracking

6.7 DISCUSSION

ACKNOWLEDGMENTS

6.A APPENDIX

REFERENCES

CHAPTER 7ROBUST WIDE‐AREA FAULT VISIBILITY AND STRUCTURAL OBSERVABILITY IN POWER SYSTEMS WITH SYNCHRONIZED MEASUREMENT UNITS

7.1 INTRODUCTION

7.2 ROBUST FAULT VISIBILITY USING STRATEGICALLY DEPLOYED SYNCHRONIZED MEASUREMENTS

7.2.1 Wide‐Area Synchronized Measurement‐Based Fault Location Exploiting Traveling Waves

7.2.2 Optimal Deployment of Synchronized Sensors for Wide‐Area Fault Visibility

7.2.3 Application of Robust Estimation for Fault Location

7.2.4 Simulation Results on the Modified IEEE 118‐Bus System

7.3 OPTIMAL PMU DEPLOYMENT FOR SYSTEM‐WIDE STRUCTURAL OBSERVABILITY

7.3.1 Optimal PMU Deployment Considering Channel Limits

7.3.2 Modeling Zero‐Injection Buses

7.3.3 Optimal Deployment Accounting for Single PMU Loss

7.3.4 Consolidated PMU Deployment Results

7.4 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

CHAPTER 8A ROBUST HYBRID POWER SYSTEM STATE ESTIMATOR WITH UNKNOWN MEASUREMENT NOISE

8.1 INTRODUCTION

8.2 PROBLEM STATEMENT

8.3 PROPOSED FRAMEWORK FOR ROBUST HYBRID STATE ESTIMATION

8.3.1 Statistical Model of Noises

8.3.2 Determining Optimal Buffered PMU Data and Its Robust Covariance Matrix

8.3.2.1 Detect System Abnormality by Proposed Robust Mahalanobis Distances

Remark:

8.3.3 Proposed Robust Nonlinear State Estimation using SCADA Measurements

8.3.3.1 Asymptomatic Normality of Estimation Error Covariance Matrix

Theorem 8.1

8.3.3.2 Total Influence Function of the GM‐estimator

Remark:

8.3.4 State Fusion: Robust Linear State Estimation Incorporating Buffered PMU Measurements

8.3.5 Implementation Issues

8.4 NUMERICAL RESULTS

8.4.1 Gaussian Measurement Noise

8.4.2 Non‐Gaussian Measurement Noise

8.4.3 Robustness to Various Types of Bad Data

8.5 CONCLUSIONS

REFERENCES

CHAPTER 9LEAST‐TRIMMED‐ABSOLUTE‐VALUE STATE ESTIMATOR

9.1 BAD DATA DETECTION AND ROBUST ESTIMATORS. 9.1.1 Bad Data Detection

9.1.1.1 χ2 Distribution

9.1.1.2 χ2 Test for Bad‐Data Detection in WLS Estimator

9.1.2 Robust Estimators

9.1.2.1 M‐Estimator

9.1.2.2 L‐Estimator

9.1.2.3 R‐Estimator

9.1.3 Existing Robust Estimators

9.1.3.1 Least‐Absolute‐Value (LAV)

9.1.3.2 Least‐Median‐of‐Squares (LMedS)

9.1.3.3 Least‐Measurement‐Rejected (LMR)

9.1.3.4 Least‐Trimmed‐Square (LTS)

9.1.4 Proposed LTAV Robust Estimators

9.1.4.1 General Steps of LTAV Estimator

9.1.4.2 Mixed Integer Linear Programming Implementation

9.2 RESULTS AND DISCUSSION

9.2.1 6‐Bus System

9.2.1.1 6‐Bus DC State Estimation

9.2.1.1.1 Case 0: Basic Case with Only Random Noise

9.2.1.1.2 Case 1: Single Bad Data

9.2.1.1.3 Case 2: Multiple Noninteracting Bad Data

9.2.1.1.4 Case 3: Multiple Interacting Bad Data

9.2.1.1.5 Summary

9.2.1.2 5.1.2 6‐Bus AC State Estimation

9.2.1.2.1 Case 0: Basic Case with Only Random Noise

9.2.1.2.2 Case 1: Single Bad Data

9.2.1.2.3 Case 2: Multiple Noninteracting Bad Data

9.2.1.2.4 Case 3: Multiple Interacting Bad Data

9.2.1.2.5 Summary

9.2.2 14‐Bus System

9.2.3 30‐Bus System

9.2.4 Section Summary

9.3 CONCLUSIONS

9.A.1 6‐Bus DC System

9.A.2 6‐Bus AC System

9.B 14‐Bus AC System

9.C 30‐Bus AC System

REFERENCES

CHAPTER 10PROBABILISTIC STATE ESTIMATION IN DISTRIBUTION NETWORKS

10.1 INTRODUCTION

10.2 STATE ESTIMATION IN DISTRIBUTION NETWORKS

10.2.1 A Confidence‐Based Approach to State Estimation in Distribution Networks

10.2.2 State Estimation Accuracy

10.2.3 Computation Time and System Integration

10.2.4 Case Studies

10.3 IMPROVING OBSERVABILITY IN DISTRIBUTION NETWORKS

10.3.1 Probabilistic Approach to Observability

10.3.2 Probabilistic Observability Assessment Algorithm

10.3.3 Scalability

10.3.4 Case Studies

10.4 CONCLUSION

REFERENCES

CHAPTER 11ADVANCED DISTRIBUTION SYSTEM STATE ESTIMATION IN MULTI‐AREA ARCHITECTURES

11.1 ISSUES AND CHALLENGES OF DISTRIBUTION SYSTEM STATE ESTIMATION. 11.1.1 Distribution Grid Peculiarities

11.1.2 Future Scenarios

11.1.3 Distribution System State Estimation, DSSE

11.1.4 Open Issues of DSSE

11.1.5 Sensors and Smart Metering

11.1.6 Automation and Communication Requirements

11.1.7 Multi‐Area State Estimation

11.1.8 Multi‐Area Approaches

11.1.8.1 Level of Area Overlapping

11.1.8.2 Execution of the Estimation Processes

11.1.8.2.1 In‐Series Implementation

11.1.8.2.2 In‐Parallel Implementation

11.1.8.3 Architecture

11.1.8.3.1 Centralized Solution

11.1.8.3.2 Decentralized Architecture

11.1.8.4 Solution Methodology

11.2 DISTRIBUTION SYSTEM MULTI‐AREA STATE ESTIMATION (DS‐MASE) APPROACH

11.2.1 Multi‐Area Partition and Architecture

11.2.2 DS‐MASE Procedure

11.2.2.1 First Step

11.2.2.2 Second Step

11.2.3 Harmonization/Integration Method

11.2.3.1 Simplified WLS Procedure

11.2.3.2 Impact of Shared Measurements

11.2.3.3 Modified WLS Procedure

11.2.3.4 Summary of the Second‐Step Process

11.3 APPLICATION OF THE DS‐MASE APPROACH

11.3.1 Description of the Scenario and Assumptions

11.3.2 Example of MASE Applications. 11.3.2.1 Scenario 1: No Measurements in the Overlapping Nodes

11.3.2.2 Scenario 2: Coordinated Network Partition and Measurement System

11.3.2.3 Scenario 3: Meter Placement on a Pre‐existing Measurement System

11.3.2.4 Scenario 4: PMU‐Based Measurement System

11.4 VALIDITY AND APPLICABILITY OF DS‐MASE APPROACH

REFERENCES

CHAPTER 12HIERARCHICAL MULTI‐AREA STATE ESTIMATION

12.1 INTRODUCTION. 12.1.1 Problem Description

12.1.2 Classification of Existing Methods

12.1.2.1 Architecture: Hierarchical Versus Fully Decentralized

12.1.2.2 Optimality: Optimal Versus Suboptimal

12.1.2.3 Communication Frequency: Inter‐area and Intra‐area Gauss–Newton Iterations

12.1.3 Organization of this Chapter

12.2 PRELIMINARIES. 12.2.1 Measurement Model

12.2.2 Weighted Least Square (WLS) Estimator

12.2.3 Add‐On Functions

12.3 MODELING AND PROBLEM FORMULATION. 12.3.1 Multi‐area Power System Modeling

12.3.2 Centralized State Estimation

12.4 A BRIEF SURVEY OF SOLUTION TECHNIQUES. 12.4.1 Overview

12.4.2 Two‐Level Single‐Iteration State Estimators

12.4.3 Inter‐area Gauss–Newton State Estimators

12.4.4 Intra‐area Gauss–Newton State Estimators

12.5 HIERARCHICAL STATE ESTIMATOR VIA SENSITIVITY FUNCTION EXCHANGES. 12.5.1 Outline

12.5.2 Initialization

12.5.3 Local State Estimator

12.5.4 Coordinator's Problem

12.5.5 Complete Scheme

12.6 ADD‐ON FUNCTIONS IN MULTI‐AREA STATE ESTIMATION. 12.6.1 Observability Analysis

12.6.2 Bad Data Identification

12.7 PROPERTIES. 12.7.1 Assumptions

Assumption 12.1

Assumption 12.2

Assumption 12.3

12.7.2 Optimality

Theorem 12.1:

12.7.3 Convergence

Theorem 12.2:

12.7.4 Computation and Communication Costs

12.8 SIMULATIONS. 12.8.1 Tests Setup

12.8.2 Tests on the IEEE 14‐Bus System with Two Areas

12.8.3 Tests on the IEEE 118‐Bus System with Three Areas

12.8.4 Tests on Real Power System with Four Areas

12.9 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

NOTE

CHAPTER 13PARALLEL DOMAIN‐DECOMPOSITION‐BASED DISTRIBUTED STATE ESTIMATION FOR LARGE‐SCALE POWER SYSTEMS

13.1 INTRODUCTION

13.2 FUNDAMENTAL THEORY AND FORMULATION. 13.2.1 State Estimation Formulation

13.2.1.1 Weighted Least Square Static State Estimation

13.2.1.2 Extended Kalman Filter‐Based Dynamic State Estimation

13.2.1.2.1 Parameter Identification

13.2.1.2.2 State Prediction

13.2.1.2.3 State Filtering

13.2.2 Measurement and Component Modeling

13.2.3 Parallel Processing

13.2.3.1 CPU and GPU Architecture

13.2.3.2 OpenMP

13.2.3.2.1 Simple Example

13.2.3.3 Many‐Core GPU

13.2.3.3.1 Simple GPU Kernel

13.2.4 Numerical Methods for Solving Linear Systems

13.2.4.1 Direct Method

13.2.4.1.1 LU Decomposition

13.2.4.1.2 Cholesky Decomposition

13.2.4.2 Iterative Method

13.2.4.2.1 Preconditioned Conjugate Gradient Method

13.2.4.2.2 Gauss–Jacobi Methods

13.2.5 Additive Schwarz Method (ASM)

13.2.5.1 Domain Decomposition

13.2.6 Coherency Analysis

13.3 EXPERIMENTAL RESULTS

13.3.1 Hardware Setup

13.3.2 Extraction of Parallelism

13.3.3 Parallel ASM‐Based WLS Static State Estimation

13.3.3.1 Accuracy Analysis

13.3.3.2 Efficiency Analysis

13.3.4 Parallel ASM‐Based Dynamic State Estimation on GPU

13.3.4.1 Hierarchy of Parallelism

13.3.4.2 Accuracy Evaluation

13.3.4.3 Efficiency Analysis

13.4 CONCLUSION

REFERENCES

CHAPTER 14DISHONEST GAUSS–NEWTON METHOD‐BASED POWER SYSTEM STATE ESTIMATION ON A GPU

14.1 INTRODUCTION

14.2 BACKGROUND. 14.2.1 Nonlinear Power Flow Equations

14.2.2 Weighted Least Squares Estimation

14.2.3 Dishonest Gauss–Newton Method

14.2.4 Difference Between Honest and Dishonest Method

14.2.5 Convergence of Dishonest Method

14.2.6 Graphics Processing Unit

14.3 PERFORMANCE OF DISHONEST GAUSS–NEWTON METHOD

14.3.1 Accuracy of the Estimation

14.3.2 Fast Decoupled State Estimator

14.3.3 Impact of Noise

14.4 GPU IMPLEMENTATION

14.5 SIMULATION RESULTS

14.6 DISCUSSIONS ON SCALABILITY

14.6.1 Estimation of Time for Very Large Systems

14.6.2 Communication Time

14.7 DISTRIBUTED METHOD OF PARALLELIZATION

14.7.1 Cellular Computational Network

14.7.2 Challenges of Cellular Estimation

14.7.3 Structure of the Cellular Dishonest Estimator

14.7.4 Accuracy of Cellular Dishonest Method

14.7.5 Time of Cellular Dishonest Method

14.8 CONCLUSIONS

REFERENCES

INDEX

IEEE Press Series on Power Engineering

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

IEEE Press 445 Hoes Lane Piscataway, NJ 08854

.....

Although problem (2.35) is a mixed integer nonlinear programming problem, the set of constraints (2.35d) can be relaxed:

leading to a relaxed mixed integer nonlinear programming problem. This relaxed problem can be tackled by any nonlinear programming solver (such as MINOS [11]). Numerical simulations show that the particular structure of problem (2.35) imposes that relaxed binary variables bi have a binary value at the optimum, i.e. .

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Advances in Electric Power and Energy
Подняться наверх