Fog Computing

Fog Computing
Автор книги: id книги: 1887729     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14492,8 руб.     (140,71$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119551775 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice  focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.

Оглавление

Группа авторов. Fog Computing

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING

Fog Computing: Theory and Practice

List of Contributors

Acronyms

1 Mobile Fog Computing

1.1 Introduction

1.2 Mobile Fog Computing and Related Models

1.3 The Needs of Mobile Fog Computing

1.3.1 Infrastructural Mobile Fog Computing. 1.3.1.1 Road Crash Avoidance

1.3.1.2 Marine Data Acquisition

1.3.1.3 Forest Fire Detection

1.3.1.4 Mobile Ambient Assisted Living

1.3.2 Land Vehicular Fog

1.3.3 Marine Fog

1.3.4 Unmanned Aerial Vehicular Fog

1.3.5 User Equipment-Based Fog

1.3.5.1 Healthcare

1.3.5.2 Content Delivery

1.3.5.3 Crowd Sensing

1.4 Communication Technologies

1.4.1 IEEE 802.11

1.4.2 4G, 5G Standards

1.4.3 WPAN, Short-Range Technologies

1.4.4 LPWAN, Other Medium- and Long-Range Technologies

1.5 Nonfunctional Requirements

1.5.1 Heterogeneity

1.5.1.1 Server Heterogeneity

1.5.1.2 End-Device Heterogeneity

1.5.1.3 End-to-End Network Heterogeneity

1.5.2 Context-Awareness

1.5.2.1 Server Context

1.5.2.2 Mobility Context

1.5.2.3 End-to-end Context

1.5.2.4 Application Context

1.5.3 Tenant

1.5.3.1 Application Management

1.5.3.2 Cost of Energy and Tenancy

1.5.4 Provider

1.5.4.1 Physical Placement

1.5.4.2 Server Discoverability and Connectivity

1.5.4.3 Operation Management

1.5.4.4 Operation Cost

1.5.5 Security

1.5.5.1 Physical Security

1.5.5.2 End-to-End Security

1.5.5.3 Security Monitoring and Management

1.5.5.4 Trust Management and Multitenancy Security

1.6 Open Challenges

1.6.1 Challenges in Land Vehicular Fog Computing

1.6.2 Challenges in Marine Fog Computing

1.6.3 Challenges in Unmanned Aerial Vehicular Fog Computing

1.6.4 Challenges in User Equipment-based Fog Computing

1.6.5 General Challenges. 1.6.5.1 Testbed Tool

1.6.5.2 Autonomous Runtime Adjustment and Rapid Redeployment

1.6.5.3 Scheduling of Fog Applications

1.6.5.4 Scalable Resource Management of Fog Providers

1.7 Conclusion

Acknowledgment

References

Note

2 Edge and Fog: A Survey, Use Cases, and Future Challenges

2.1 Introduction

2.2 Edge Computing

2.2.1 Edge Computing Architecture

2.3 Fog Computing

2.3.1 Fog Computing Architecture

2.4 Fog and Edge Illustrative Use Cases

2.4.1 Edge Computing Use Cases

2.4.1.1 A Wearable ECG Sensor

2.4.1.2 Smart Home

2.4.2 Fog Computing Use Cases

2.4.2.1 Smart Traffic Light System

2.4.2.2 Smart Pipeline Monitoring System

2.5 Future Challenges

2.5.1 Resource Management

2.5.2 Security and Privacy

2.5.3 Network Management

2.6 Conclusion

Acknowledgment

References

3 Deep Learning in the Era of Edge Computing: Challenges and Opportunities

3.1 Introduction

3.2 Challenges and Opportunities. 3.2.1 Memory and Computational Expensiveness of DNN Models

3.2.2 Data Discrepancy in Real-world Settings

3.2.3 Constrained Battery Life of Edge Devices

3.2.4 Heterogeneity in Sensor Data

3.2.5 Heterogeneity in Computing Units

3.2.6 Multitenancy of Deep Learning Tasks

3.2.7 Offloading to Nearby Edges

3.2.8 On-device Training

3.3 Concluding Remarks

References

4 Caching, Security, and Mobility in Content-centric Networking

4.1 Introduction

4.2 Caching and Fog Computing

4.3 Mobility Management in CCN

4.3.1 Classification of CCN Contents and their Mobility

4.3.2 User Mobility

4.3.3 Server-side Mobility

4.3.4 Direct Exchange for Location Update

4.3.5 Query to the Rendezvous for Location Update

4.3.6 Mobility with Indirection Point

4.3.7 Interest Forwarding

4.3.8 Proxy-based Mobility Management

4.3.9 Tunnel-based Redirection (TBR)

4.4 Security in Content-centric Networks

4.4.1 Risks Due to Caching

4.4.2 DOS Attack Risk

4.4.3 Security Model

4.5 Caching

4.5.1 Cache Allocation Approaches

4.5.2 Data Allocation Approaches

4.6 Conclusions

References

5 Security and Privacy Issues in Fog Computing

5.1 Introduction

5.2 Trust in IoT

5.3 Authentication

5.3.1 Related Work

5.4 Authorization

5.4.1 Related Work

5.5 Privacy

5.5.1 Requirements of Privacy in IoT

5.5.1.1 Device Privacy

5.5.1.2 Communication Privacy

5.5.1.3 Storage Privacy

5.5.1.4 Processing Privacy

5.6 Web Semantics and Trust Management for Fog Computing

5.6.1 Trust Through Web Semantics

5.7 Discussion

5.7.1 Authentication

5.7.2 Authorization

5.8 Conclusion

References

6 How Fog Computing Can Support Latency/Reliability-sensitive IoT Applications: An Overview and a Taxonomy of State-of-the-art Solutions

6.1 Introduction

6.2 Fog Computing for IoT: Definition and Requirements

6.2.1 Definitions

6.2.2 Motivations

6.2.3 Fog Computing Requirements When Applied to Challenging IoTs Application Domains

6.2.3.1 Scalability

6.2.3.2 Interoperability

6.2.3.3 Real-Time Responsiveness

6.2.3.4 Data Quality

6.2.3.5 Security and Privacy

6.2.3.6 Location-Awareness

6.2.3.7 Mobility

6.2.4 IoT Case Studies

6.3 Fog Computing: Architectural Model

6.3.1 Communication

6.3.2 Security and Privacy

6.3.3 Internet of Things

6.3.4 Data Quality

6.3.5 Cloudification

6.3.6 Analytics and Decision-Making

6.4 Fog Computing for IoT: A Taxonomy

6.4.1 Communication

6.4.1.1 Standardization

6.4.1.2 Reliability

6.4.1.3 Low-Latency

6.4.1.4 Mobility

6.4.2 Security and Privacy Layer

6.4.2.1 Safety

6.4.2.2 Security

6.4.2.3 Privacy

6.4.3 Internet of Things

6.4.3.1 Sensors

6.4.3.2 Actuators

6.4.4 Data Quality

6.4.4.1 Data Normalization

6.4.4.2 Data Filtering

6.4.4.3 Data Aggregation

6.4.5 Cloudification

6.4.5.1 Virtualization

6.4.5.2 Storage

6.4.6 Analytics and Decision-Making Layer

6.4.6.1 Data Analytics

6.4.6.2 Decision-Making

6.5 Comparisons of Surveyed Solutions

6.5.1 Communication

6.5.1.1 Standardization

6.5.1.2 Reliability

6.5.1.3 Low-latency Communication

6.5.1.4 Mobility

6.5.2 Security and Privacy

6.5.2.1 Security

6.5.2.2 Privacy

6.5.2.3 Safety

6.5.3 Internet of Things

6.5.3.1 Sensors

6.5.3.2 Actuators

6.5.4 Data Quality

6.5.4.1 Data Normalization

6.5.4.2 Data Filtering

6.5.4.3 Data Aggregation

6.5.5 Cloudification

6.5.5.1 Virtualization

6.5.5.2 Storage

6.5.6 Analytics and Decision-Making Layer

6.5.6.1 Data Analytics

6.5.6.2 Decision-Making

6.6 Challenges and Recommended Research Directions

6.7 Concluding Remarks

References

7 Harnessing the Computing Continuum for Programming Our World

7.1 Introduction and Overview

7.2 Research Philosophy

7.3 A Goal-oriented Approach to Programming the Computing Continuum

7.3.1 A Motivating Continuum Example

7.3.2 Goal-oriented Annotations for Intensional Specification

7.3.3 A Mapping and Run-time System for the Computing Continuum

7.3.4 Building Blocks and Enabling Technologies

7.3.4.1 The Array of Things (AoT)

7.3.4.2 Iowa Quantified (IQ)

7.3.4.3 Intelligent, Multiversion Libraries

7.3.4.4 Data Flow Execution for Big Data

7.4 Summary

References

Note

8 Fog Computing for Energy Harvesting-enabled Internet of Things

8.1 Introduction

8.2 System Model

8.2.1 Computation Model

8.2.1.1 Local Execution Model

8.2.1.2 Fog Execution Model

8.2.2 Energy Harvesting Model

8.2.2.1 Stochastic Process

8.2.2.2 Wireless Power Transfer

8.3 Tradeoffs in EH Fog Systems

8.3.1 Energy Consumption vs. Latency

8.3.2 Execution Delay vs. Task Dropping Cost

8.4 Future Research Challenges

Acknowledgment

References

9 Optimizing Energy Efficiency of Wearable Sensors Using Fog-assisted Control

9.1 Introduction

9.2 Background

9.3 Related Topics

9.4 Design Challenges

9.5 IoT System Architecture

9.5.1 Fog Computing and its Benefits

9.6 Fog-assisted Runtime Energy Management in Wearable Sensors

9.6.1 Computational Self-Awareness

9.6.2 Energy Optimization Algorithms

9.6.3 Myopic Strategy

9.6.4 MDP Strategy

9.7 Conclusions

Acknowledgment

References

10 Latency Minimization Through Optimal Data Placement in Fog Networks

10.1 Introduction

10.2 Related Work

10.2.1 Long-Term and Short-Term Placement

10.2.2 Data Replication

10.3 Problem Statement

10.3.1 Network Model

10.3.2 Multiple Data Placement with Budget Problem

10.3.3 Challenges

10.4 Delay Minimization Without Replication

10.4.1 Problem Formulation

10.4.2 Min-Cost Flow Formulation

10.4.3 Complexity Reduction

10.5 Delay Minimization with Replication

10.5.1 Hardness Proof

10.5.2 Single Request in Line Topology

Algorithm 10.1 Dynamic Programming for Single Request

10.5.3 Greedy Solution in Multiple Requests

10.5.4 Rounding Approach in Multiple Requests

10.5.4.1 Generating Linear Programming Solution

Algorithm 10.2 Min-Volume Algorithm

Algorithm 10.3 Rounding Algorithm

10.5.4.2 Creating Centers

10.5.4.3 Converting to Integral Solution

10.6 Performance Evaluation

10.6.1 Trace Information

10.6.2 Experimental Setting

10.6.3 Algorithm Comparison

10.6.4 Experimental Results. 10.6.4.1 Trace Analysis

10.6.4.2 Results Without Data Replication

10.6.4.3 Results with Data Replication

10.6.4.4 Summary

10.7 Conclusion

Acknowledgement

References

11 Modeling and Simulation of Distributed Fog Environment Using FogNetSim++

11.1 Introduction

11.2 Modeling and Simulation

11.3 FogNetSim++: Architecture

11.4 FogNetSim++: Installation and Environment Setup

11.4.1 OMNeT++ Installation

11.4.2 FogNetSim++ Installation

11.4.3 Sample Fog Simulation

11.5 Conclusion

References

Notes

12 Distributed Machine Learning for IoT Applications in the Fog

12.1 Introduction

12.2 Challenges in Data Processing for IoT

12.2.1 Big Data in IoT

12.2.2 Big Data Stream

12.2.3 Data Stream Processing

12.3 Computational Intelligence and Fog Computing

12.3.1 Machine Learning

12.3.2 Deep Learning

12.4 Challenges for Running Machine Learning on Fog Devices

12.4.1 Solutions Available on the Market to Deploy ML on Fog Devices

12.5 Approaches to Distribute Intelligence on Fog Devices

12.6 Final Remarks

Acknowledgments

References

Notes

13 Fog Computing-Based Communication Systems for Modern Smart Grids

13.1 Introduction

13.2 An Overview of Communication Technologies in Smart Grid

13.3 Distribution Management System (DMS) Based on Fog/Cloud Computing

13.4 Real-time Simulation of the Proposed Feeder-based Communication Scheme Using MATLAB and ThingSpeak

13.5 Conclusion

References

14 An Estimation of Distribution Algorithm to Optimize the Utility of Task Scheduling Under Fog Computing Systems

14.1 Introduction

14.2 Estimation of Distribution Algorithm

14.3 Related Work

14.4 Problem Statement

14.5 Details of Proposed Algorithm

14.5.1 Encoding and Decoding Method

14.5.2 uEDA Scheme

14.5.2.1 Probability Model and Initialization

14.5.2.2 Updating and Sampling Method

14.5.3 Local Search Method

Algorithm 14.1 Local Search Method

14.6 Simulation

14.6.1 Comparison Algorithm

Algorithm 14.2 Modified Heuristic Algorithm

14.6.2 Simulation Environment and Experiment Settings

14.6.3 Compared with the Heuristic Method

14.7 Conclusion

References

15 Reliable and Power-Efficient Machine Learning in Wearable Sensors

15.1 Introduction

15.2 Preliminaries and Related Work

15.2.1 Gold Standard MET Computation

15.2.2 Sensor-based MET Estimation

15.2.3 Unreliability Mitigation

15.2.4 Transfer Learning

15.3 System Architecture and Methods

15.3.1 Reliable MET Calculation

15.3.1.1 Sensor Localization

15.3.1.2 MET Value Estimation

15.3.2 The Reconfigurable MET Estimation System

Algorithm 15.1 Transfer Label Algorithm

15.4 Data Collection and Experimental Procedures

15.4.1 Exergaming Experiment

15.4.2 Treadmill Experiment

15.5 Results

15.5.1 Reliable MET Calculation

15.5.1.1 Sensor Localization

15.5.1.2 MET Value Estimation

15.5.1.3 The Impact of Sensor Localization

15.5.2 Reconfigurable Design

15.5.2.1 Treadmill Experiment

15.5.2.2 Exergaming Experiment

15.6 Discussion and Future Work

15.7 Summary

References

16 Insights into Software-Defined Networking and Applications in Fog Computing

16.1 Introduction

16.2 OpenFlow Protocol

16.2.1 OpenFlow Switch

16.3 SDN-Based Research Works

16.4 SDN in Fog Computing

16.5 SDN in Wireless Mesh Networks. 16.5.1 Challenges in Wireless Mesh Networks

16.5.2 SDN Technique in WMNs

16.5.3 Benefits of SDN in WMNs

16.5.4 Fault Tolerance in SDN-based WMNs

16.6 SDN in Wireless Sensor Networks. 16.6.1 Challenges in Wireless Sensor Networks

16.6.2 SDN in Wireless Sensor Networks

16.6.3 Sensor Open Flow

16.6.4 Home Networks Using SDWN

16.6.5 Securing Software Defined Wireless Networks (SDWN)

16.7 Conclusion

References

17 Time-Critical Fog Computing for Vehicular Networks

17.1 Introduction

17.2 Applications and Timeliness Guarantees and Perturbations

17.2.1 Application Scenarios

17.2.2 Application Model

17.2.3 Timeliness Guarantees

17.2.4 Benchmarking Vehicular Applications Concerning Timeliness Guarantees

17.2.5 Building Blocks to Reach Timeliness Guarantees

17.2.6 Timeliness Perturbations

17.2.6.1 Constraints

17.2.6.2 Failures

17.2.6.3 Threats

17.3 Coping with Perturbation to Meet Timeliness Guarantees

17.3.1 Coping with Constraints

17.3.1.1 Network Resource Management

17.3.1.2 Computational Resource and Data Management

17.3.2 Coping with Failures

17.3.3 Coping with Threats

17.4 Research Gaps and Future Research Directions

17.4.1 Mobile Fog Computing

17.4.2 Fog Service Level Agreement (SLA)

17.5 Conclusion

References

18 A Reliable and Efficient Fog-Based Architecture for Autonomous Vehicular Networks

18.1 Introduction

18.2 Proposed Methodology

18.3 Hypothesis Formulation

18.4 Simulation Design

18.4.1 Results and Discussions

18.4.2 Hypothesis Testing

18.4.2.1 First Hypothesis

18.4.2.2 Second Hypothesis

18.4.2.3 Third Hypothesis

18.5 Conclusions

References

19 Fog Computing to Enable Geospatial Video Analytics for Disaster-incident Situational Awareness

19.1 Introduction

19.1.1 How Can Geospatial Video Analytics Help with Disaster-Incident Situational Awareness?

19.1.2 Fog Computing for Geospatial Video Analytics

19.1.3 Function-Centric Cloud/Fog Computing Paradigm

19.1.4 Function-Centric Fog/Cloud Computing Challenges

19.1.5 Chapter Organization

19.2 Computer Vision Application Case Studies and FCC Motivation

19.2.1 Patient Tracking with Face Recognition Case Study. 19.2.1.1 Application's 3C Pipeline Needs

19.2.1.2 Face Recognition Pipeline Details

19.2.2 3-D Scene Reconstruction from LIDAR Scans. 19.2.2.1 Application's 3C Pipeline Needs

19.2.2.2 3-D Scene Reconstruction Pipeline Details

19.2.3 Tracking Objects of Interest in WAMI. 19.2.3.1 Application's 3C Pipeline Needs

19.2.3.2 Object Tracking Pipeline Details

19.3 Geospatial Video Analytics Data Collection Using Edge Routing

19.3.1 Network Edge Geographic Routing Challenges

19.3.2 Artificial Intelligence Relevance in Geographic Routing

19.3.3 AI-Augmented Geographic Routing Implementation

19.4 Fog/Cloud Data Processing for Geospatial Video Analytics Consumption

19.4.1 Geo-Distributed Latency-Sensitive SFC Challenges

19.4.1.1 SFC Optimality

19.4.1.2 SFC Reliability

19.4.1.3 Our Approach

19.4.2 Metapath-Based Composite Variable Approach

19.4.2.1 Metalinks and Metapaths

19.4.2.2 Constrained Shortest Metapaths

19.4.2.3 Multiple-link Chain Composition via Metapath

19.4.2.4 Allowable Fitness Functions for Metapath-Based Variables

19.4.2.5 Metapath Composite Variable Approach Results

19.4.3 Metapath-Based SFC Orchestration Implementation

19.4.3.1 Control Applications

19.4.3.2 SCL

19.4.3.3 SDN and Hypervisor

19.5 Concluding Remarks. 19.5.1 What Have We Learned?

19.5.2 The Road Ahead and Open Problems

References

Note

20 An Insight into 5G Networks with Fog Computing

20.1 Introduction

20.2 Vision of 5G

20.3 Fog Computing with 5G Networks. 20.3.1 Fog Computing

20.3.2 The Need of Fog Computing in 5G Networks

20.4 Architecture of 5G. 20.4.1 Cellular Architecture

20.4.2 Energy Efficiency

20.4.3 Two-Tier Architecture

20.4.4 Cognitive Radio

20.4.5 Cloud-Based Architecture

20.5 Technology and Methodology for 5G

20.5.1 HetNet

HTC Use Case

MTC Use Case

CTC Use Case

20.5.2 Beam Division Multiple Access (BDMA)

20.5.3 Mixed Bandwidth Data Path

20.5.4 Wireless Virtualization

20.5.5 Flexible Duplex

20.5.6 Multiple-Input Multiple-Output (MIMO)

20.5.7 M2M

20.5.8 Multibeam-Based Communication System

20.5.9 Software-Defined Networking (SDN)

20.6 Applications

20.6.1 Health Care

20.6.2 Smart Grid

20.6.3 Logistic and Tracking

20.6.4 Personal Usage

20.6.5 Virtualized Home

20.7 Challenges

20.8 Conclusion

References

21 Fog Computing for Bioinformatics Applications

21.1 Introduction

21.2 Cloud Computing

21.2.1 Service Models

21.2.2 Delivery Models

21.3 Cloud Computing Applications in Bioinformatics

21.3.1 Bioinformatics Tools Deployed as SaaS

21.3.2 Bioinformatics Platforms Deployed as PaaS

21.3.3 Bioinformatics Tools Deployed as IaaS

21.4 Fog Computing

21.5 Fog Computing for Bioinformatics Applications

21.5.1 Real-Time Microorganism Detection System

21.6 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

.....

The shorter range, while unfit for marine scenarios, can be applied in UAV-Fog since use cases, such as supporting land/marine vehicle, mandate that the UAV itself will adjust its location to stay close to the peers [31].

The traditional Wi-Fi AP-based infrastructure can be expanded using Wi-Fi direct. Here the client devices form a local Wi-Fi direct group, reducing the load on the AP by locally disseminating the data [35, 53] and advertising device services [54].

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Fog Computing
Подняться наверх