Nanobiotechnology in Diagnosis, Drug Delivery and Treatment

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment
Автор книги: id книги: 1889106     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 17503,2 руб.     (169,49$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119671862 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Presents nanobiotechnology  in drug delivery and disease management   Featuring contributions from noted experts in the field, this book highlights recent advances in the nano-based drug delivery systems. It also covers the diagnosis and role of various nanomaterials in the management of infectious diseases and non-infectious disorders, such as cancers and other malignancies and their role in future medicine.  Nanobiotechnology in Diagnosis, Drug Delivery and Treatment  starts by introducing how nanotechnology has revolutionized drug delivery, diagnosis, and treatments of diseases. It then focuses on the role of various nanocomposites in diagnosis, drug delivery, and treatment of diseases like cancer, Alzheimer's disease, diabetes, and many others. Next, it discusses the application of a variety of nanomaterials in the diagnosis and management of gastrointestinal tract disorders. The book explains the concept of nanotheranostics in detail and its role in effective monitoring of drug response, targeted drug delivery, enhanced drug accumulation in the target tissues, sustained as well as triggered release of drugs, and reduction in adverse effects. Other chapters cover aptamer-incorporated nanoparticle systems; magnetic nanoparticles; theranostics and vaccines; toxicological concerns of nanomaterials used in nanomedicine; and more.  Provides a concise overview of state-of-the-art nanomaterials and their application like drug delivery in infectious diseases and non-infectious disorders Highlights recent advances in the nano-based drug delivery systems and role of various nanomaterials Introduces nano-based sensors which detect various pathogens Covers the use of nanodevices in diagnostics and theranostics  Nanobiotechnology in Diagnosis, Drug Delivery and Treatment  is an ideal book for researchers and scientists working in various disciplines such as microbiology, biotechnology, nanotechnology, pharmaceutical biotechnology, pharmacology, pharmaceutics, and nanomedicine.

Оглавление

Группа авторов. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment

List of Contributors

Preface

1 Nanotechnology: A New Era in the Revolution of Drug Delivery, Diagnosis, and Treatment of Diseases

1.1 Introduction

1.2 Nanomaterials Used in Diagnosis, Drug Delivery, and Treatment of Diseases

1.2.1 Inorganic Nanomaterials

1.2.1.1 Colloidal Metal Nanoparticles

1.2.1.2 Mesoporous Silica Nanoparticles

1.2.1.3 Superparamagnetic Nanoparticles

1.2.1.4 Quantum Dots

1.2.1.5 Graphene

1.2.1.6 Carbon Nanotubes (CNTs)

1.2.2 Organic Nanomaterials. 1.2.2.1 Polymeric Nanoparticles

1.2.2.2 Polymeric Micelles

1.2.2.3 Liposomes

1.2.2.4 Transferosomes

1.2.2.5 Niosomes

1.2.2.6 Ethosomes

1.2.2.7 Solid Lipid Nanoparticles (SLN)

1.2.2.8 Dendrimers

1.3 Role of Nanomaterials in Diagnosis, Drug Delivery, and Treatment

1.3.1 In Diagnosis

1.3.2 In Drug Delivery and Treatment

1.3.2.1 Diabetes

1.3.2.2 Cancer

1.3.2.3 Psoriasis

1.3.2.4 HIV

1.3.2.5 Neurodegenerative Diseases

1.3.2.6 Blood Pressure (BP) and Hypertension

1.3.2.7 Pulmonary Tuberculosis

1.4 Advantages and Challenges Associated with Nanomaterials Used in Drug Delivery, Diagnosis, and Treatment of Diseases

1.4.1 Advantages of Nanomaterials

1.4.2 Challenges Associated with the Use of Nanomaterials

1.5 Conclusion

References

2 Selenium Nanocomposites in Diagnosis, Drug Delivery, and Treatment

Nomenclature

2.1 Introduction

2.2 Nanoselenium: Application in Diagnosis

2.3 Nanoselenium and Antitumor Activity

2.4 Nanoselenium As a Part of Drug Delivery System

2.5 Nanoselenium for Alzheimer's Disease

2.6 Antibacterial Activity of Nanoselenium

2.7 Nanoselenium in Diabetes Treatment

2.8 Other Applications of Nanoselenium

2.9 Conclusion

References

3 Emerging Applications of Nanomaterials in the Diagnosis and Treatment of Gastrointestinal Disorders

3.1 Introduction

3.2 Properties of Nanomaterials Affecting Their Potential Use in Medicine

3.3 Nanomaterials Used in Diagnosis and Treatment of Gastrointestinal Disorders. 3.3.1 Liposomes

3.3.2 Polymers

3.3.3 Core‐Shell Nanoparticles

3.3.4 Quantum Dots (QDs)

3.4 Nanoparticle Uptake in the Gastrointestinal Tract

3.5 Gastrointestinal Disorders and Their Treatment with Nanomaterials

3.6 Nanomaterials: Potential Treatment for Gastric Bacterial Infections

3.7 Nanostructures for Colon Cancer Diagnostics and Therapeutics

3.8 Conclusion and Future Perspectives

References

4 Nanotheranostics: Novel Materials for Targeted Therapy and Diagnosis

4.1 Introduction

4.2 Magnetic Nanostructures

4.3 Gold/Silver‐Based Nanomaterials

4.4 Quantum Dot‐Based

4.5 Polymer‐Based Nanomaterials

4.6 Silica‐Based Nanomaterials

4.7 Carbon‐Based Nanomaterials

4.7.1 Fullerene

4.7.2 Carbon Quantum Dots

4.7.3 Carbon Nanotubes

4.7.4 Graphene

4.8 Conclusion and Future Perspectives

References

5 Aptamer‐Incorporated Nanoparticle Systems for Drug Delivery

5.1 Introduction

5.2 Different Types of Aptamers for Drug Delivery

5.2.1 Aptamers for Targeting. 5.2.1.1 Mucin 1

5.2.1.2 AS1411

5.2.1.3 Prostate‐Specific Membrane Antigen (PSMA)

5.2.1.4 EGFR

5.2.1.5 Sgc8c

5.2.1.6 EpCAM Aptamer

5.2.2 Therapeutic Aptamers

5.2.2.1 AS1411

5.2.2.2 Proliferating Cell Nuclear Antigen (α‐PCNA) Aptamer

5.2.2.3 Forkhead Box M1 (FOXM1)

5.2.2.4 NOX‐A12

5.2.2.5 Vimentin

5.2.2.6 Vascular Endothelial Growth Factor (VEGF)

5.2.3 Gating/Sensing Aptamers

5.3 Aptamer‐Conjugated Nanosystems for Targeted Delivery Platforms. 5.3.1 Aptamer‐Based Polymeric Nanoparticles

5.3.2 Aptamer‐Based Lipid Nanoparticles

5.3.3 Aptamer‐Based DNA Nanostructures

5.3.4 Aptamer‐Based Peptide Nanoparticles

5.3.5 Aptamer‐Based Inorganic Nanoparticles

5.4 Aptamer‐Conjugated Nanosystems for Smart Delivery Platforms

5.4.1 Endogenous Stimuli‐Responsive Aptamer‐Conjugated Nanosystems. 5.4.1.1 pH‐Responsive Aptamer‐Conjugated Nanosystems

5.4.1.2 Redox‐Responsive Aptamer‐Conjugated Nanosystems

5.4.2 Physical Exogenous Stimuli‐Responsive Aptamer‐Conjugated Nanosystems. 5.4.2.1 Light and Temperature‐Responsive Aptamer‐Conjugated Nanosystems

5.4.2.2 Ultrasound‐Responsive Aptamer‐Conjugated Nanosystems

5.5 Clinical Applications of Aptamers

5.6 Conclusion

References

6 Application of Nanotechnology in Transdermal Drug Delivery

6.1 Introduction

6.2 What Is the Stratum Corneum (SC)?

6.2.1 SC as a Barrier

6.3 Nanocarriers

6.3.1 Human Skin

6.3.2 Interaction Between Nanocarriers and Skin

6.4 Properties of Nanocarriers

6.4.1 Physicochemical Properties of Nanocarriers for TDD

6.4.1.1 Size and Surface of the Particle

6.4.2 Targeting of Nanocarriers

6.5 Drug Delivery Systems

6.5.1 TDD

6.5.1.1 Liposomes

6.5.1.2 Transfersomes

6.5.1.3 Ethosomes

6.5.1.4 Dendrimers

6.5.1.5 Niosomes

6.5.1.6 Nanoparticles

6.5.1.7 Nanoemulsions

6.6 Potentials of Nanotechnology

6.7 Enhancement of TDD. 6.7.1 Physical Approach

6.7.2 Chemical Approach

6.8 Contribution of Nanotechnology in TDD in the Future

6.9 Conclusion

References

7 Superparamagnetic Iron Oxide Nanoparticle‐Based Drug Delivery in Cancer Therapeutics

7.1 Introduction

7.2 Magnetic Drug Delivery Systems. 7.2.1 Surface‐Modified SPIONs

7.2.2 SPIONs‐Encapsulated Polymeric Nanoparticles/Micelles

7.2.3 Magnetic Liposomes

7.2.4 Magneto‐Niosomes

7.2.5 Other Magnetic Nanostructures

7.3 Magnetic Delivery of Anticancer Drugs

7.3.1 Magnetic Delivery of Single Drugs. 7.3.1.1 Delivery of Curcumin

7.3.1.2 Delivery of Paclitaxel

7.3.1.3 Delivery of Doxorubicin (DOX)

7.3.1.4 Delivery of Methotrexate

7.3.1.5 Delivery of Daunorubicin

7.3.1.6 Delivery of Other Drugs

7.3.2 Magnetic Delivery of Dual Drugs

7.4 Conclusion

References

8 Virus‐Like Nanoparticle‐Mediated Delivery of Cancer Therapeutics

8.1 Introduction

8.2 Viruses as Bioinspired Delivery Vehicles

8.2.1 Plant‐Based Virus‐Like Nanoparticles

8.2.2 Animal‐Based Virus‐Like Nanoparticles

8.2.3 Phage Virus‐Like Nanoparticles

8.3 Virus‐Like Nanoparticle (VLNP) Production

8.4 VLNP‐Mediated Cancer Drug Delivery

8.4.1 Plant Virus‐Derived VLNP‐Mediated Delivery of Cancer Therapeutics

8.4.2 Phage Virus‐Derived VLNP‐Mediated Delivery of the Cancer Therapeutics

8.4.3 Animal Virus‐Derived VLNP‐Mediated Delivery of Cancer Therapeutics

8.5 Conclusions

References

9 Magnetic Nanoparticles: An Emergent Platform for Future Cancer Theranostics

9.1 Introduction

9.2 Magnetic Properties of MNPs

9.3 Advantages of MNPs in Biomedicine

9.4 Preparation of MNPs

9.4.1 Physical Methods

9.4.1.1 Milling

9.4.1.2 Wet Milling

9.4.1.3 Dry Milling

9.4.1.4 Electron Beam Lithography (EBL)

9.4.2 Chemical Methods

9.4.2.1 Coprecipitation

9.4.2.2 Sol‐Gel

9.4.2.3 Hydrothermal/Solvothermal

9.4.2.4 Microemulsion

9.4.2.5 Electrochemical

9.5 Coating of Magnetic Nanoparticles

9.6 Biomedical Applications of MNPs. 9.6.1 Targeted Drug Delivery

9.6.2 Passive Targeting

9.6.3 Active Targeting

9.6.4 Cancer Diagnostics

9.6.5 Magnetic Resonance Imaging (MRI)

9.6.6 Magnetic Hyperthermia Therapy

9.7 Conclusions

References

10 Chitosan Nanoparticles: A Novel Antimicrobial Agent

10.1 Introduction

10.2 Bioactivities of ChNPs

10.2.1 Antimicrobial Activity of ChNPs

10.2.1.1 Antibacterial Activity of ChNPs

10.2.1.2 Antifungal Activity of ChNPs

10.2.1.3 Antiviral Activity of ChNPs

10.2.2 Anticancer Activity of ChNPs

10.2.3 Other Biomedical Applications

10.3 Factors Affecting the Antimicrobial Activity of ChNPs

10.3.1 Intrinsic Factors. 10.3.1.1 Molecular Weight

10.3.1.2 Degree of Deacetylation

10.3.1.3 Concentration of ChNPs

10.3.1.4 Particle Size and Zeta Potential of Nanoparticles

10.3.2 Extrinsic Factors. 10.3.2.1 pH

10.3.2.2 Temperature

10.3.2.3 Time

10.3.3 Microbial Factors. 10.3.3.1 Species of Microorganism

10.3.3.2 Cell Age

10.4 Mode of Action of ChNPs

10.4.1 Part of Active Component: Chitosan

10.4.2 Part of Microorganisms

10.5 Conclusion

References

11 Sulfur Nanoparticles: Biosynthesis, Antibacterial Applications, and Their Mechanism of Action

11.1 Introduction

11.2 Mechanisms of Antibiotic Resistance and Combination Therapy

11.3 Biosynthesis of Sulfur Nanoparticles (SNPs)

11.4 Antibacterial Application of SNPs

11.5 Possible Mechanisms for Antibacterial Action

11.6 Conclusion

References

12 Role of Nanotechnology in the Management of Indoor Fungi

12.1 Introduction

12.2 Indoor Fungal Deterioration. 12.2.1 Indoor Mycobiota

12.2.2 Factors Influencing Indoor Fungal Growth

12.3 Conventional Approach Used for the Control of Indoor Fungi

12.4 Nanotechnology for the Control of Fungal Growth

12.4.1 Metal Nanoparticles

12.4.2 Non‐metal and Hybrid (Metal/Non‐metal) Nanoparticles

12.4.3 Nanotechnological Management of Indoor Fungi

12.5 Hygienic Coatings and Nanotechnology

12.6 Conclusion

References

13 Nanotechnology for Antifungal Therapy

13.1 Introduction

13.2 Basic Aspects of Nanotechnology in Medicine

13.3 Nanoparticulate Drug Delivery Systems for Refined Antifungal Therapy

13.3.1 Metallic Nanoparticles

13.3.2 Liposomes

13.3.3 Polymeric Nanoparticles

13.4 Conclusions and Final Remarks

References

14 Chitosan Conjugate of Biogenic Silver Nanoparticles: A Promising Drug Formulation with Antimicrobial and Anticancer Activities

14.1 Introduction

14.2 Conjugation of AgNPs with Natural Polymers

14.3 Conjugation of Bio‐AgNPs with Chitosan

14.4 Methods for Conjugation

14.5 Techniques Used for the Characterization of ChBio‐AgNPs

14.5.1 UV‐Visible Spectroscopy

14.5.2 X‐Ray Diffraction (XRD) Analysis

14.5.3 Transmission Electron Microscopy (TEM)

14.5.4 Scanning Electron Microscopy (SEM)

14.5.5 Dynamic Light Scattering (DLS) and Zeta Potential

14.5.6 Atomic Force Microscopy (AFM)

14.5.7 Fourier Transform Infrared (FTIR) Spectroscopy

14.6 Bioactivities of ChBio‐AgNP Conjugate

14.6.1 Antibacterial Activity of ChBio‐AgNPs

14.6.2 Antifungal Activity of ChBio‐AgNPs

14.6.3 Antioxidant Activity of ChBio‐AgNPs

14.6.4 Anticancer Efficacy of ChBio‐AgNPs

14.7 Cytotoxicity Analysis. 14.7.1 RBC Lysis Assay

14.7.2 MTT Assay

14.8 Conclusion

Acknowledgment

References

15 Leishmaniasis: Where Infection and Nanoparticles Meet

15.1 Introduction

15.2 Clinical Forms

15.3 Epidemiology

15.4 Life Cycle and Transmission

15.5 Diagnosis, Detection, and Surveillance

15.6 Treatment Strategies for Leishmaniasis

15.7 Nanotechnological Approach to Leishmaniasis Treatment

15.7.1 Polymeric Nanoparticles. 15.7.1.1 Biodegradable Polymers

15.7.1.2 Micellar Polymeric Nanoparticles

15.7.1.3 Natural Polymers

15.7.1.4 Bioconjugates

15.7.2 Inclusion Compounds

15.7.3 Dendrimers

15.7.4 Liposomes

15.7.5 Other Vesicular Nanoparticles

15.7.6 Solid Lipid Nanoparticles (SLNs)

15.7.7 Micro‐ and Nanoemulsions

15.7.8 Nanodrugs and Nanosuspensions

15.7.9 Inorganic Nanoparticles

15.8 Conclusion

References

16 Theranostics and Vaccines: Current Status and Future Expectations

16.1 Introduction

16.2 The Role of Theranostics and Vaccines in Early Diagnosis and Therapeutic Strategies in Different Diseases. 16.2.1 Cancer

16.2.2 Cardiovascular Disease

16.2.3 Neurodegenerative Diseases

16.3 Vaccine

16.4 Conclusions

References

17 Toxicological Concerns of Nanomaterials Used in Biomedical Applications

17.1 Introduction

17.2 Factors Influencing the Toxicity of Nanoparticles

17.2.1 Size

17.2.2 Shape

17.2.3 Concentration or Dose

17.2.4 Surface Charge

17.2.5 Chemical Composition and Surface Coating

17.2.6 Aggregation

17.3 Why Is Toxicity Evaluation of Nanomaterials Necessary?

17.4 Toxicity of Nanomaterials Used in Biomedical Applications

17.4.1 In vitro Toxicity

17.4.2 In vivo Toxicity

17.4.2.1 Toxicity to the Liver

17.4.2.2 Toxicity to Kidney

17.4.2.3 Toxicity to Brain

17.4.2.4 Toxicity to Skin

17.4.2.5 Toxicity to Heart

17.5 Surface Engineering to Avoid Nanotoxicity

17.6 Conclusion and Future Perspectives

Acknowledgments

References

Index. a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

q

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Mahendra Rai

.....

Leyanet Barberia‐Roque Center for Research and Development in Painting Technology National University of La Plata La Plata Buenos Aires, Argentina

Natalia Bellotti Center for Research and Development in Painting Technology National University of La Plata La Plata Buenos Aires, Argentina and Faculty of Natural Sciences and Museum National University of La Plata La Plata Argentina Jacqueline Teixeira da Silva Laboratory of Nanobiotechnology, Institute of Tropical Pathology and Public Health Federal University of Goiás Goiânia Brazil

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment
Подняться наверх