Nanobiotechnology in Diagnosis, Drug Delivery and Treatment
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment
List of Contributors
Preface
1 Nanotechnology: A New Era in the Revolution of Drug Delivery, Diagnosis, and Treatment of Diseases
1.1 Introduction
1.2 Nanomaterials Used in Diagnosis, Drug Delivery, and Treatment of Diseases
1.2.1 Inorganic Nanomaterials
1.2.1.1 Colloidal Metal Nanoparticles
1.2.1.2 Mesoporous Silica Nanoparticles
1.2.1.3 Superparamagnetic Nanoparticles
1.2.1.4 Quantum Dots
1.2.1.5 Graphene
1.2.1.6 Carbon Nanotubes (CNTs)
1.2.2 Organic Nanomaterials. 1.2.2.1 Polymeric Nanoparticles
1.2.2.2 Polymeric Micelles
1.2.2.3 Liposomes
1.2.2.4 Transferosomes
1.2.2.5 Niosomes
1.2.2.6 Ethosomes
1.2.2.7 Solid Lipid Nanoparticles (SLN)
1.2.2.8 Dendrimers
1.3 Role of Nanomaterials in Diagnosis, Drug Delivery, and Treatment
1.3.1 In Diagnosis
1.3.2 In Drug Delivery and Treatment
1.3.2.1 Diabetes
1.3.2.2 Cancer
1.3.2.3 Psoriasis
1.3.2.4 HIV
1.3.2.5 Neurodegenerative Diseases
1.3.2.6 Blood Pressure (BP) and Hypertension
1.3.2.7 Pulmonary Tuberculosis
1.4 Advantages and Challenges Associated with Nanomaterials Used in Drug Delivery, Diagnosis, and Treatment of Diseases
1.4.1 Advantages of Nanomaterials
1.4.2 Challenges Associated with the Use of Nanomaterials
1.5 Conclusion
References
2 Selenium Nanocomposites in Diagnosis, Drug Delivery, and Treatment
Nomenclature
2.1 Introduction
2.2 Nanoselenium: Application in Diagnosis
2.3 Nanoselenium and Antitumor Activity
2.4 Nanoselenium As a Part of Drug Delivery System
2.5 Nanoselenium for Alzheimer's Disease
2.6 Antibacterial Activity of Nanoselenium
2.7 Nanoselenium in Diabetes Treatment
2.8 Other Applications of Nanoselenium
2.9 Conclusion
References
3 Emerging Applications of Nanomaterials in the Diagnosis and Treatment of Gastrointestinal Disorders
3.1 Introduction
3.2 Properties of Nanomaterials Affecting Their Potential Use in Medicine
3.3 Nanomaterials Used in Diagnosis and Treatment of Gastrointestinal Disorders. 3.3.1 Liposomes
3.3.2 Polymers
3.3.3 Core‐Shell Nanoparticles
3.3.4 Quantum Dots (QDs)
3.4 Nanoparticle Uptake in the Gastrointestinal Tract
3.5 Gastrointestinal Disorders and Their Treatment with Nanomaterials
3.6 Nanomaterials: Potential Treatment for Gastric Bacterial Infections
3.7 Nanostructures for Colon Cancer Diagnostics and Therapeutics
3.8 Conclusion and Future Perspectives
References
4 Nanotheranostics: Novel Materials for Targeted Therapy and Diagnosis
4.1 Introduction
4.2 Magnetic Nanostructures
4.3 Gold/Silver‐Based Nanomaterials
4.4 Quantum Dot‐Based
4.5 Polymer‐Based Nanomaterials
4.6 Silica‐Based Nanomaterials
4.7 Carbon‐Based Nanomaterials
4.7.1 Fullerene
4.7.2 Carbon Quantum Dots
4.7.3 Carbon Nanotubes
4.7.4 Graphene
4.8 Conclusion and Future Perspectives
References
5 Aptamer‐Incorporated Nanoparticle Systems for Drug Delivery
5.1 Introduction
5.2 Different Types of Aptamers for Drug Delivery
5.2.1 Aptamers for Targeting. 5.2.1.1 Mucin 1
5.2.1.2 AS1411
5.2.1.3 Prostate‐Specific Membrane Antigen (PSMA)
5.2.1.4 EGFR
5.2.1.5 Sgc8c
5.2.1.6 EpCAM Aptamer
5.2.2 Therapeutic Aptamers
5.2.2.1 AS1411
5.2.2.2 Proliferating Cell Nuclear Antigen (α‐PCNA) Aptamer
5.2.2.3 Forkhead Box M1 (FOXM1)
5.2.2.4 NOX‐A12
5.2.2.5 Vimentin
5.2.2.6 Vascular Endothelial Growth Factor (VEGF)
5.2.3 Gating/Sensing Aptamers
5.3 Aptamer‐Conjugated Nanosystems for Targeted Delivery Platforms. 5.3.1 Aptamer‐Based Polymeric Nanoparticles
5.3.2 Aptamer‐Based Lipid Nanoparticles
5.3.3 Aptamer‐Based DNA Nanostructures
5.3.4 Aptamer‐Based Peptide Nanoparticles
5.3.5 Aptamer‐Based Inorganic Nanoparticles
5.4 Aptamer‐Conjugated Nanosystems for Smart Delivery Platforms
5.4.1 Endogenous Stimuli‐Responsive Aptamer‐Conjugated Nanosystems. 5.4.1.1 pH‐Responsive Aptamer‐Conjugated Nanosystems
5.4.1.2 Redox‐Responsive Aptamer‐Conjugated Nanosystems
5.4.2 Physical Exogenous Stimuli‐Responsive Aptamer‐Conjugated Nanosystems. 5.4.2.1 Light and Temperature‐Responsive Aptamer‐Conjugated Nanosystems
5.4.2.2 Ultrasound‐Responsive Aptamer‐Conjugated Nanosystems
5.5 Clinical Applications of Aptamers
5.6 Conclusion
References
6 Application of Nanotechnology in Transdermal Drug Delivery
6.1 Introduction
6.2 What Is the Stratum Corneum (SC)?
6.2.1 SC as a Barrier
6.3 Nanocarriers
6.3.1 Human Skin
6.3.2 Interaction Between Nanocarriers and Skin
6.4 Properties of Nanocarriers
6.4.1 Physicochemical Properties of Nanocarriers for TDD
6.4.1.1 Size and Surface of the Particle
6.4.2 Targeting of Nanocarriers
6.5 Drug Delivery Systems
6.5.1 TDD
6.5.1.1 Liposomes
6.5.1.2 Transfersomes
6.5.1.3 Ethosomes
6.5.1.4 Dendrimers
6.5.1.5 Niosomes
6.5.1.6 Nanoparticles
6.5.1.7 Nanoemulsions
6.6 Potentials of Nanotechnology
6.7 Enhancement of TDD. 6.7.1 Physical Approach
6.7.2 Chemical Approach
6.8 Contribution of Nanotechnology in TDD in the Future
6.9 Conclusion
References
7 Superparamagnetic Iron Oxide Nanoparticle‐Based Drug Delivery in Cancer Therapeutics
7.1 Introduction
7.2 Magnetic Drug Delivery Systems. 7.2.1 Surface‐Modified SPIONs
7.2.2 SPIONs‐Encapsulated Polymeric Nanoparticles/Micelles
7.2.3 Magnetic Liposomes
7.2.4 Magneto‐Niosomes
7.2.5 Other Magnetic Nanostructures
7.3 Magnetic Delivery of Anticancer Drugs
7.3.1 Magnetic Delivery of Single Drugs. 7.3.1.1 Delivery of Curcumin
7.3.1.2 Delivery of Paclitaxel
7.3.1.3 Delivery of Doxorubicin (DOX)
7.3.1.4 Delivery of Methotrexate
7.3.1.5 Delivery of Daunorubicin
7.3.1.6 Delivery of Other Drugs
7.3.2 Magnetic Delivery of Dual Drugs
7.4 Conclusion
References
8 Virus‐Like Nanoparticle‐Mediated Delivery of Cancer Therapeutics
8.1 Introduction
8.2 Viruses as Bioinspired Delivery Vehicles
8.2.1 Plant‐Based Virus‐Like Nanoparticles
8.2.2 Animal‐Based Virus‐Like Nanoparticles
8.2.3 Phage Virus‐Like Nanoparticles
8.3 Virus‐Like Nanoparticle (VLNP) Production
8.4 VLNP‐Mediated Cancer Drug Delivery
8.4.1 Plant Virus‐Derived VLNP‐Mediated Delivery of Cancer Therapeutics
8.4.2 Phage Virus‐Derived VLNP‐Mediated Delivery of the Cancer Therapeutics
8.4.3 Animal Virus‐Derived VLNP‐Mediated Delivery of Cancer Therapeutics
8.5 Conclusions
References
9 Magnetic Nanoparticles: An Emergent Platform for Future Cancer Theranostics
9.1 Introduction
9.2 Magnetic Properties of MNPs
9.3 Advantages of MNPs in Biomedicine
9.4 Preparation of MNPs
9.4.1 Physical Methods
9.4.1.1 Milling
9.4.1.2 Wet Milling
9.4.1.3 Dry Milling
9.4.1.4 Electron Beam Lithography (EBL)
9.4.2 Chemical Methods
9.4.2.1 Coprecipitation
9.4.2.2 Sol‐Gel
9.4.2.3 Hydrothermal/Solvothermal
9.4.2.4 Microemulsion
9.4.2.5 Electrochemical
9.5 Coating of Magnetic Nanoparticles
9.6 Biomedical Applications of MNPs. 9.6.1 Targeted Drug Delivery
9.6.2 Passive Targeting
9.6.3 Active Targeting
9.6.4 Cancer Diagnostics
9.6.5 Magnetic Resonance Imaging (MRI)
9.6.6 Magnetic Hyperthermia Therapy
9.7 Conclusions
References
10 Chitosan Nanoparticles: A Novel Antimicrobial Agent
10.1 Introduction
10.2 Bioactivities of ChNPs
10.2.1 Antimicrobial Activity of ChNPs
10.2.1.1 Antibacterial Activity of ChNPs
10.2.1.2 Antifungal Activity of ChNPs
10.2.1.3 Antiviral Activity of ChNPs
10.2.2 Anticancer Activity of ChNPs
10.2.3 Other Biomedical Applications
10.3 Factors Affecting the Antimicrobial Activity of ChNPs
10.3.1 Intrinsic Factors. 10.3.1.1 Molecular Weight
10.3.1.2 Degree of Deacetylation
10.3.1.3 Concentration of ChNPs
10.3.1.4 Particle Size and Zeta Potential of Nanoparticles
10.3.2 Extrinsic Factors. 10.3.2.1 pH
10.3.2.2 Temperature
10.3.2.3 Time
10.3.3 Microbial Factors. 10.3.3.1 Species of Microorganism
10.3.3.2 Cell Age
10.4 Mode of Action of ChNPs
10.4.1 Part of Active Component: Chitosan
10.4.2 Part of Microorganisms
10.5 Conclusion
References
11 Sulfur Nanoparticles: Biosynthesis, Antibacterial Applications, and Their Mechanism of Action
11.1 Introduction
11.2 Mechanisms of Antibiotic Resistance and Combination Therapy
11.3 Biosynthesis of Sulfur Nanoparticles (SNPs)
11.4 Antibacterial Application of SNPs
11.5 Possible Mechanisms for Antibacterial Action
11.6 Conclusion
References
12 Role of Nanotechnology in the Management of Indoor Fungi
12.1 Introduction
12.2 Indoor Fungal Deterioration. 12.2.1 Indoor Mycobiota
12.2.2 Factors Influencing Indoor Fungal Growth
12.3 Conventional Approach Used for the Control of Indoor Fungi
12.4 Nanotechnology for the Control of Fungal Growth
12.4.1 Metal Nanoparticles
12.4.2 Non‐metal and Hybrid (Metal/Non‐metal) Nanoparticles
12.4.3 Nanotechnological Management of Indoor Fungi
12.5 Hygienic Coatings and Nanotechnology
12.6 Conclusion
References
13 Nanotechnology for Antifungal Therapy
13.1 Introduction
13.2 Basic Aspects of Nanotechnology in Medicine
13.3 Nanoparticulate Drug Delivery Systems for Refined Antifungal Therapy
13.3.1 Metallic Nanoparticles
13.3.2 Liposomes
13.3.3 Polymeric Nanoparticles
13.4 Conclusions and Final Remarks
References
14 Chitosan Conjugate of Biogenic Silver Nanoparticles: A Promising Drug Formulation with Antimicrobial and Anticancer Activities
14.1 Introduction
14.2 Conjugation of AgNPs with Natural Polymers
14.3 Conjugation of Bio‐AgNPs with Chitosan
14.4 Methods for Conjugation
14.5 Techniques Used for the Characterization of ChBio‐AgNPs
14.5.1 UV‐Visible Spectroscopy
14.5.2 X‐Ray Diffraction (XRD) Analysis
14.5.3 Transmission Electron Microscopy (TEM)
14.5.4 Scanning Electron Microscopy (SEM)
14.5.5 Dynamic Light Scattering (DLS) and Zeta Potential
14.5.6 Atomic Force Microscopy (AFM)
14.5.7 Fourier Transform Infrared (FTIR) Spectroscopy
14.6 Bioactivities of ChBio‐AgNP Conjugate
14.6.1 Antibacterial Activity of ChBio‐AgNPs
14.6.2 Antifungal Activity of ChBio‐AgNPs
14.6.3 Antioxidant Activity of ChBio‐AgNPs
14.6.4 Anticancer Efficacy of ChBio‐AgNPs
14.7 Cytotoxicity Analysis. 14.7.1 RBC Lysis Assay
14.7.2 MTT Assay
14.8 Conclusion
Acknowledgment
References
15 Leishmaniasis: Where Infection and Nanoparticles Meet
15.1 Introduction
15.2 Clinical Forms
15.3 Epidemiology
15.4 Life Cycle and Transmission
15.5 Diagnosis, Detection, and Surveillance
15.6 Treatment Strategies for Leishmaniasis
15.7 Nanotechnological Approach to Leishmaniasis Treatment
15.7.1 Polymeric Nanoparticles. 15.7.1.1 Biodegradable Polymers
15.7.1.2 Micellar Polymeric Nanoparticles
15.7.1.3 Natural Polymers
15.7.1.4 Bioconjugates
15.7.2 Inclusion Compounds
15.7.3 Dendrimers
15.7.4 Liposomes
15.7.5 Other Vesicular Nanoparticles
15.7.6 Solid Lipid Nanoparticles (SLNs)
15.7.7 Micro‐ and Nanoemulsions
15.7.8 Nanodrugs and Nanosuspensions
15.7.9 Inorganic Nanoparticles
15.8 Conclusion
References
16 Theranostics and Vaccines: Current Status and Future Expectations
16.1 Introduction
16.2 The Role of Theranostics and Vaccines in Early Diagnosis and Therapeutic Strategies in Different Diseases. 16.2.1 Cancer
16.2.2 Cardiovascular Disease
16.2.3 Neurodegenerative Diseases
16.3 Vaccine
16.4 Conclusions
References
17 Toxicological Concerns of Nanomaterials Used in Biomedical Applications
17.1 Introduction
17.2 Factors Influencing the Toxicity of Nanoparticles
17.2.1 Size
17.2.2 Shape
17.2.3 Concentration or Dose
17.2.4 Surface Charge
17.2.5 Chemical Composition and Surface Coating
17.2.6 Aggregation
17.3 Why Is Toxicity Evaluation of Nanomaterials Necessary?
17.4 Toxicity of Nanomaterials Used in Biomedical Applications
17.4.1 In vitro Toxicity
17.4.2 In vivo Toxicity
17.4.2.1 Toxicity to the Liver
17.4.2.2 Toxicity to Kidney
17.4.2.3 Toxicity to Brain
17.4.2.4 Toxicity to Skin
17.4.2.5 Toxicity to Heart
17.5 Surface Engineering to Avoid Nanotoxicity
17.6 Conclusion and Future Perspectives
Acknowledgments
References
Index. a
b
c
d
e
f
g
h
i
k
l
m
n
o
p
q
r
s
t
u
v
w
x
z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Edited by
Mahendra Rai
.....
Leyanet Barberia‐Roque Center for Research and Development in Painting Technology National University of La Plata La Plata Buenos Aires, Argentina
Natalia Bellotti Center for Research and Development in Painting Technology National University of La Plata La Plata Buenos Aires, Argentina and Faculty of Natural Sciences and Museum National University of La Plata La Plata Argentina Jacqueline Teixeira da Silva Laboratory of Nanobiotechnology, Institute of Tropical Pathology and Public Health Federal University of Goiás Goiânia Brazil
.....