Remote Detection and Maritime Pollution

Remote Detection and Maritime Pollution
Автор книги: id книги: 1890186     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16753,6 руб.     (182,45$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Биология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119801832 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Оглавление

Группа авторов. Remote Detection and Maritime Pollution

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Remote Detection and Maritime Pollution

Forewords

1. POLLUPROOF Project. 1.1. Introduction

1.2. POLLUPROOF project. 1.2.1.Objectives

1.2.2.Hazardous and noxious substances

1.3. Experimental approach

1.3.1.Calibration of optical sensors

1.3.1.1. Vertical configuration

1.3.1.2. Horizontal configuration

1.3.1.3. Tank

1.3.2.Evaluation of radar, optical and hyperspectral sensors at sea. 1.3.2.1. General presentation of the experiment

1.3.2.2. Experimental releases

1.4. Conclusion

1.5. References

2. Multifrequency Radar Imagery and Characterization of Hazardous and Noxious Substances at Sea. 2.1. Introduction

2.2. Experimentation at sea. 2.2.1.Radar imagery

2.2.2.Chemical products

2.2.3.Planning of measurements

2.3. Methodology. 2.3.1.Scattering from ocean surface

2.3.2.Detection and relative quantification

2.3.3.Oil/water mixing index

2.4. Results and discussion. 2.4.1.Observation of hazardous and noxious substances at sea

2.4.2.Detection and quantification of impact on the ocean surface

2.4.3.Characterization

2.5. Conclusion

2.6. Acknowledgments

2.7. References

3. Remote Sensing of HNS using Longwave Infrared Hyperspectral Imaging. 3.1. Introduction

3.2. LWIR hyperspectral remote sensing capability

3.2.1.Basin measurements at CEDRE

3.2.2.Sea measurements

3.3. Detection and identification of HNS using LWIR hyperspectral sensing

3.3.1.Detection phenomenology

3.3.2.Detection algorithm

3.3.3.Basin measurements at CEDRE

3.3.4.Sea measurements

3.4. Conclusion

3.5. References

4. Customs Expertise in Remote Sensing. 4.1. Introduction

4.2. The aircraft

4.3. The equipment

4.4. Airborne remote sensing processing

4.5. Side-looking airborne radar (SLAR) processing

4.6. Infrared and ultraviolet line scanner

4.7. Standard detection and investigation

4.8. The future, a new multi-mission aircraft

5. Remote Sensing as Evidence in Court. 5.1. Introduction

5.2. Legal framework of the offence and the evidence. 5.2.1.What the texts say

5.2.2.What legal precedents have been set?

5.3. Remote sensing: questions and advances. 5.3.1.Does the verdict of theTraquaircase exclude recourse to remote sensing?

5.3.2.What answers and advances have been observed?

5.4. Conclusion

5.5. References

6. Long-Term Surveillance and Monitoring of Natural Events in Coastal Waters. 6.1. Introduction

6.2. Satellite products for long-term surveillance

6.3. Some specific events of natural origin in coastal waters

6.4. Conclusion

6.5. References

7. VIGISAT Ground Receiving Station and EMSA CleanSeaNet Services. 7.1. Introduction

7.2. VIGISAT ground receiving station and detection of pollution in near-real time

7.3. Polluter identification with AIS data flows and drift modeling

7.4. References

8. System-to-system Interface Between the EMSA CleanSeaNet Service and OSERIT. 8.1. Introduction

8.2. The EMSA CleanSeaNet service

8.3. OSERIT

8.3.1.The OSERIT Oil Spill Model

8.3.2.OSERIT visualization tool

8.3.3.OSERIT domain

8.3.4.OSERIT met-ocean forcing

8.3.5.OSERIT oil database

8.4. A system-to-system interface between CleanSeaNet and OSERIT

8.4.1.Scenario 1: automatically triggered forecast

8.4.2.Scenario 2: automatically triggered backtrack

8.4.3.Scenario 3: manually triggered forecast

8.4.4.Scenario 4: manually triggered backtrack

8.5. TheFlinterstarincident. 8.5.1.The incident

8.5.2.Monitoring and surveillance of the oil and its fate/behavior

8.6. Conclusion

8.7. Acknowledgments

8.8. References

9. Optimizing the Use of Aerial Surveillance Assets in Oil Spill Response Operations. 9.1. Introduction

9.2. Assumptions and working hypotheses

9.3. Experimental protocol: testing the primary hypothesis

9.3.1.Technical specifications

9.3.2.Operational requirements

9.3.3.Choice of SUAS

9.3.4.Systematic testing of assumptions

9.3.4.1. Evaluating core assumption 1

9.3.4.2. Evaluating core assumption 2

9.3.4.3. Preliminary findings

9.4. Experimental protocol: underlying assumptions and testing of secondary hypothesis

9.5. The case for using SUAS as a force multiplier in spill response coordination

9.6. Appendix 1

9.7. Appendix 2

9.8. References

10. Potential of Imaging UAVs for Coastal Monitoring. 10.1. Introduction

10.2. Constraints on the survey

10.3. Examples of UAV platforms

10.4. Survey protocol

10.5. Data processing

10.6. Examples of applications

10.7. Conclusion

10.8. References

11. Use of Remote Sensing Techniques to Survey, Detect and Interpret Hydrocarbon Seeps and Spills for Exploration and Environment. 11.1. Introduction

11.2. Methodology

11.3. Offshore facilities monitoring/mining field

11.4. Emergency

11.5. Perspectives

11.6. Conclusion

11.7. References

12. Natural Escapes of Oil in Sedimentary Basins: Space-borne Recognition and Pairing with Seafloor and Sub-seafloor Features. 12.1. Introduction

12.2. Datasets and methods. 12.2.1.Data. 12.2.1.1. Space-borne tools to detect seeping hydrocarbons

12.2.1.2. Assessment of current velocity across the water column

12.2.1.3. Imaging sedimentary series using petroleum exploration data

12.2.2.Methods

12.3. Results. 12.3.1.Oil slick mapping

12.3.2.Oil migration pathways and horizontal deflection

12.4. Conclusion

12.5. References

Conclusion. Principal Conclusions of Debates: Synthesis and Perspectives. C.1. Challenges for innovation

C.2. Preliminary juridical aspects

C.3. Interference of physical factors on sea

C.4. Drone competitiveness

C.5. Pollutant identification

C.6. Sensors

C.7. References

List of Authors

Index. A, B, C

D, E, F

G, H, I

J, K, L

M, N, O

P, R

S, T

U, V, W, X

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Chemical Spill Studies

.....

HNS releases were performed from the salvage, rescue and oil spill response vessel Ailette of the French Navy under the direction of CEPPOL (Centre of Practical Expertise in Pollution Response) and CEDRE. Each chemical product was contained in a one cubic-meter tank, in HDPE (High Density PolyEthylene) for non-aggressive HNS (rapeseed oil, FAME and methanol) and in metal for reactive or corrosive HNS (xylene, heptane and toluene). Each tank was inserted in a metallic structure equipped with two 220 L floaters to ensure the floatability of the system and a lifting strap to manipulate the tanks with the onboard crane (Figure 1.2). The release of the HNS was performed from a dinghy by pulling a rope that activates the opening of the tank. Due to the difference in density between seawater and HNS, the chemicals spread at the sea surface.

In order to follow the drifts of the HNS slicks, two drifting buoys were implemented. Their GPS positions were transmitted by satellite every 15 minutes.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Remote Detection and Maritime Pollution
Подняться наверх