Machine Vision Inspection Systems, Machine Learning-Based Approaches

Machine Vision Inspection Systems, Machine Learning-Based Approaches
Автор книги: id книги: 1903163     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21722,2 руб.     (212,25$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119786108 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Machine Vision Inspection Systems (MVIS) is a multidisciplinary research field that emphasizes image processing, machine vision and, pattern recognition for industrial applications. Inspection techniques are generally used in destructive and non-destructive evaluation industry. Now a day's the current research on machine inspection gained more popularity among various researchers, because the manual assessment of the inspection may fail and turn into false assessment due to a large number of examining while inspection process. This volume 2 covers machine learning-based approaches in MVIS applications and it can be employed to a wide diversity of problems particularly in Non-Destructive testing (NDT), presence/absence detection, defect/fault detection (weld, textile, tiles, wood, etc.,), automated vision test & measurement, pattern matching, optical character recognition & verification (OCR/OCV), natural language processing, medical diagnosis, etc. This edited book is designed to address various aspects of recent methodologies, concepts, and research plan out to the readers for giving more depth insights for perusing research on machine vision using machine learning-based approaches.

Оглавление

Группа авторов. Machine Vision Inspection Systems, Machine Learning-Based Approaches

Contents

List of Tables

List of Illustrations

Guide

Pages

Machine Vision Inspection Systems, Volume 2. Machine Learning-Based Approaches

Preface

1. Machine Learning-Based Virus Type Classification Using Transmission Electron Microscopy Virus Images

1.1 Introduction

1.2 Related Works

1.3 Methodology

1.4 Results and Discussion

1.5 Conclusion

References

2. Capsule Networks for Character Recognition in Low Resource Languages

2.1 Introduction

2.2 Background Study. 2.2.1 Convolutional Neural Networks

2.2.2 Related Studies on One-Shot Learning

2.2.3 Character Recognition as a One-Shot Task

2.3 System Design

2.3.1 One-Shot Learning Implementation

2.3.2 Optimization and Learning

2.3.3 Dataset

2.3.4 Training Process

2.4 Experiments and Results

2.4.1 N-Way Classification

2.4.2 Within Language Classification

2.4.3 MNIST Classification

2.4.4 Sinhala Language Classification

2.5 Discussion. 2.5.1 Study Contributions

2.5.2 Challenges and Future Research Directions

2.5.3 Conclusion

References

3. An Innovative Extended Method of Optical Pattern Recognition for Medical Images With Firm Accuracy—4f System-Based Medical Optical Pattern Recognition

3.1 Introduction. 3.1.1 Fourier Optics

3.2 Optical Signal Processing

3.2.1 Diffraction of Light

3.2.2 Biconvex Lens

3.2.3 4f System

3.2.4 Literature Survey

3.3 Extended Medical Optical Pattern Recognition. 3.3.1 Optical Fourier Transform

3.3.2 Fourier Transform Using a Lens

3.3.3 Fourier Transform in the Far Field

3.3.4 Correlator Signal Processing

3.3.5 Image Formation in 4f System

3.3.6 Extended Medical Optical Pattern Recognition

3.4 Initial 4f System

3.4.1 Extended 4f System

3.4.2 Setup of 45 Degree

3.4.3 Database Creation

3.4.4 Superimposition of Diffracted Pattern

3.4.5 Image Plane

3.5 Simulation Output. 3.5.1 MATLAB

3.5.2 Sample Input Images

3.5.3 Output Simulation

3.6 Complications in Real Time Implementation

3.6.1 Database Creation

3.6.2 Accuracy

3.6.3 Optical Setup

3.7 Future Enhancements

References

4. Brain Tumor Diagnostic System— A Deep Learning Application

4.1 Introduction. 4.1.1 Intelligent Systems

4.1.2 Applied Mathematics in Machine Learning

4.1.3 Machine Learning Basics

4.1.4 Machine Learning Algorithms

4.2 Deep Learning. 4.2.1 Evolution of Deep Learning

4.2.2 Deep Networks

4.2.3 Convolutional Neural Networks

4.3 Brain Tumor Diagnostic System. 4.3.1 Brain Tumor

4.3.2 Methodology

4.3.3 Materials and Metrics

4.3.4 Results and Discussions

4.4 Computer-Aided Diagnostic Tool

4.5 Conclusion and Future Enhancements

References

5. Machine Learning for Optical Character Recognition System

5.1 Introduction

5.2 Character Recognition Methods

5.3 Phases of Recognition System

5.3.1 Image Acquisition

5.3.2 Defining ROI

5.3.3 Pre-Processing

5.3.4 Character Segmentation

5.3.5 Skew Detection and Correction

5.3.6 Binarization

5.3.7 Noise Removal

5.3.8 Thinning

5.3.9 Representation

5.3.10 Feature Extraction

5.3.11 Training and Recognition

5.4 Post-Processing

5.5 Performance Evaluation

5.5.1 Recognition Rate

5.5.2 Rejection Rate

5.5.3 Error Rate

5.6 Applications of OCR Systems

5.7 Conclusion and Future Scope

References

6. Surface Defect Detection Using SVM-Based Machine Vision System with Optimized Feature

6.1 Introduction

6.2 Methodology

6.2.1 Data Collection

6.2.2 Data Pre-Processing

6.2.3 Feature Extraction

6.2.4 Feature Optimization

6.2.5 Model Development

6.2.6 Performance Evaluation

6.3 Conclusion

References

7. Computational Linguistics-Based Tamil Character Recognition System for Text to Speech Conversion

7.1 Introduction

7.2 Literature Survey

7.3 Proposed Approach

7.4 Design and Analysis

7.5 Experimental Setup and Implementation

7.6 Conclusion

References

8. A Comparative Study of Different Classifiers to Propose a GONN for Breast Cancer Detection

8.1 Introduction

8.2 Methodology

8.2.1 Dataset

8.2.2 Linear Regression

8.2.2.1 Correlation

8.2.2.2 Covariance

8.2.3 Classification Algorithm

8.2.3.1 Support Vector Machine

8.2.3.2 Random Forest Classifier

8.2.3.3 K-Nearest Neighbor Classifier

8.2.3.4 Decision Tree Classifier

8.2.3.5 Multi-Layered Perceptron

8.3 Results and Discussion

8.4 Conclusion

References

9. Mexican Sign-Language Static-Alphabet Recognition Using 3D Affine Invariants

9.1 Introduction

9.2 Pattern Recognition

9.2.1 3D Affine Invariants

9.3 Experiments

9.3.1 Participants

9.3.2 Data Acquisition

9.3.3 Data Augmentation

9.3.4 Feature Extraction

9.3.5 Classification

9.4 Results. 9.4.1 Experiment 1

9.4.2 Experiment 2

9.4.3 Experiment 3

9.5 Discussion

9.6 Conclusion

Acknowledgments

References

10. Performance of Stepped Bar Plate-Coated Nanolayer of a Box Solar Cooker Control Based on Adaptive Tree Traversal Energy and OSELM

10.1 Introduction

10.2 Experimental Materials and Methodology. 10.2.1 Furious SiO2/TiO2 Nanoparticle Analysis of SSBC Performance Methods

10.2.2 Introduction for OSELM by Use of Solar Cooker

10.2.3 Online Sequential Extreme Learning Machine (OSELM) Approach for Solar Cooker

10.2.4 OSELM Neural Network Adaptive Controller on Novel Design

10.2.5 Binary Search Tree Analysis of Solar Cooker

10.2.6 Tree Traversal of the Solar Cooker

10.2.7 Simulation Model of Solar Cooker Results

10.2.8 Program

10.3 Results and Discussion

10.4 Conclusion

References

11. Applications to Radiography and Thermography for Inspection

11.1 Imaging Technology and Recent Advances

11.2 Radiography and its Role

11.3 History and Discovery of X-Rays

11.4 Interaction of X-Rays With Matter

11.5 Radiographic Image Quality

11.6 Applications of Radiography

11.6.1 Computed Radiography (CR)/Digital Radiography (DR)

11.6.2 Fluoroscopy

11.6.3 DEXA

11.6.4 Computed Tomography

11.6.5 Industrial Radiography

11.6.6 Thermography

11.6.7 Veterinary Imaging

11.6.8 Destructive Testing

11.6.9 Night Vision

11.6.10 Conclusion

References

12. Prediction and Classification of Breast Cancer Using Discriminative Learning Models and Techniques

12.1 Breast Cancer Diagnosis

12.2 Breast Cancer Feature Extraction

12.3 Machine Learning in Breast Cancer Classification

12.4 Image Techniques in Breast Cancer Detection

12.5 Dip-Based Breast Cancer Classification

12.6 RCNNs in Breast Cancer Prediction

12.7 Conclusion and Future Work

References

13. Compressed Medical Image Retrieval Using Data Mining and Optimized Recurrent Neural Network Techniques

13.1 Introduction

13.2 Related Work. 13.2.1 Approaches in Content-Based Image Retrieval (CBIR)

13.2.2 Medical Image Compression

13.2.3 Image Retrieval for Compressed Medical Images

13.2.4 Feature Selection in CBIR

13.2.5 CBIR Using Neural Network

13.2.6 Classification of CBIR

13.3 Methodology

13.3.1 Huffman Coding

13.3.2 Haar Wavelet

13.3.3 Sobel Edge Detector

13.3.4 Gabor Filter

13.3.5 Proposed Hybrid CS-PSO Algorithm

13.4 Results and Discussion

13.5 Conclusion and Future Enhancement. 13.5.1 Conclusion

13.5.2 Future Work

References

14. A Novel Discrete Firefly Algorithm for Constrained Multi-Objective Software Reliability Assessment of Digital Relay

14.1 Introduction

14.2 A Brief Review of the Digital Relay Software

14.3 Formulating the Constrained Multi-Objective Optimization of Software Redundancy Allocation Problem (CMOO-SRAP)

14.3.1 Mathematical Formulation

14.4 The Novel Discrete Firefly Algorithm for Constrained Multi-Objective Software Reliability Assessment of Digital Relay

14.4.1 Basic Firefly Algorithm

14.4.2 The Modified Discrete Firefly Algorithm

14.4.2.1 Generating Initial Population

14.4.2.2 Improving Solutions

14.4.2.3 Illustrative Example

14.4.3 Similarity-Based Parent Selection (SBPS)

14.4.4 Solution Encoding for the CMOO-SRAP for Digital Relay Software

14.5 Simulation Study and Results

14.5.1 Simulation Environment

14.5.2 Simulation Parameters

14.5.3 Configuration of Solution Vectors for the CMOO-SRAP for Digital Relay

14.5.4 Results and Discussion

14.6 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing

.....

12. Di Noia, A., Martino, A., Montanari, P., Rizzi, A., Supervised machine learning techniques and genetic optimization for occupational diseases risk prediction. Soft Comput., 24, 6, 4393–4406, 2020.

13. Firdausi, I., Erwin, A., Nugroho, A.S., Analysis of machine learning techniques used in behavior-based malware detection, in: 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2010, December, IEEE, pp. 201–203.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Machine Vision Inspection Systems, Machine Learning-Based Approaches
Подняться наверх