Оглавление
Группа авторов. Biotechnology of Fruit and Nut Crops
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Triploid recovery
5.1.5. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning and proteomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.2. Genetic manipulation. 5.2.1. Somaclonal variation
5.2.2. Genetic transformation
6. Conclusions
Acknowledgements
References
1. Introduction
1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
1.3.1. Rootstocks
1.3.2. Scions
2. Molecular Genetics. 2.1. Molecular markers. 2.1.1. Protein markers
2.1.2. DNA markers
2.2. Gene mapping
2.3. Gene cloning
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. In vitro mutation induction and somaclonal variation
5.2.2. Genetic transformation
6. In Vitro Storage
7. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Genetic diversity
2.2. Marker-assisted selection
2.3. Gene cloning
2.4. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Somaclonal variation
5.2.2. Genetic transformation
5.3. Cryopreservation
6. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.2.1. Major breeding objectives
1.2.2. Breeding accomplishments
2. Molecular Genetics. 2.1. Molecular markers
2.2. Genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Organogenesis
4.1.2. Haploid recovery
4.1.3. Triploid recovery
4.1.4. Protoplast isolation and culture
4.2. Genetic manipulation
4.3. Cryopreservation
5. Conclusions
References
1. Introduction
1.1. Botany and history. 1.1.1. Origin and history
1.1.2. General classification
1.1.3. Botanical description
1.2. Breeding and genetics. 1.2.1. Breeding objectives
1.2.2. Conventional breeding
1.2.3. Current challenges and opportunities
2. Molecular Genetics
2.1. Marker-assisted selection (MAS)
2.2. Genomics and transcriptomics. 2.2.1. Genomic data
2.2.2. Transcriptomic data
3. Somatic Cell Genetics
3.1. Regeneration. 3.1.1. Somatic embryogenesis
3.1.2. Haploid recovery
3.1.3. Protoplast isolation and culture
3.2. Genetic manipulation. 3.2.1. Mutation induction and somaclonal variation
3.2.2. Genetic transformation
3.3. Conservation. 3.3.1. Short- and medium-term conservation of coconut germplasm
3.3.2. Long-term conservation via cryopreservation
4. Conclusions
Acknowledgements
References
1. Introduction
1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Major breeding objectives
1.2.2. Breeding accomplishments
2. Molecular Genetics
2.1. Marker-assisted selection
2.2. Gene discovery. 2.2.1. The SHELL gene, keystone of oil palm breeding
2.2.2. Fruit development
2.2.3. Embryo development
2.2.4. Oil biosynthesis
2.2.5. Lipid degradation
2.2.6. Fruit dehiscence
2.2.7. Defence response to diseases
2.2.8. Gender plasticity
2.2.9. DNA methylation
2.3. Genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Somaclonal variation
4.2. Generation of haploids and double haploids
4.3. Protoplast isolation and culture
4.4. Genetic transformation. 4.4.1. Breeding objectives
4.4.2. Protocol
4.5. Cryopreservation
5. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
2. Molecular Genetics
2.1. Genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Haploid recovery
4.1.3. Protoplast isolation and culture
4.2. Genetic manipulation. 4.2.1. Mutation induction and somaclonal variation
4.2.2. Genetic transformation
4.3. Cryopreservation
5. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
2. Molecular Genetics
2.1. Molecular markers
2.2. Genetic linkage maps
2.3. Genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Organogenesis
4.1.3. Haploid recovery
4.1.4. Protoplast isolation and culture
4.2. Genetic manipulation. 4.2.1. Mutation induction and somaclonal variation
4.2.2. Genetic transformation
4.3. Medium-term storage and cryopreservation
5. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Major breeding objectives
1.2.2. Pest and disease tolerance
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Triploid recovery
5.1.5. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction
1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Protoplast fusion
5.2.3. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and History
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Nonaploid recovery
5.1.5. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
2. Molecular Genetics
2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration
4.2. Genetic manipulation
4.2.1. Genetic transformation
5. Functional Analysis of Blueberry Flowering Pathway Genes
6. Functional Analysis of Cold-Responsive Genes
7. Cryopreservation
8. Conclusions
Acknowledgement
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Major breeding objectives
1.2.2. Breeding accomplishments
2. Molecular Genetics. 2.1. DNA marker development
2.1.1. RFLP markers
2.1.2. PCR markers
2.1.3. Organelle markers
2.1.4. SNP markers
2.1.5. Use of multiple marker systems
2.2. Transcriptomes and gene discovery
2.3. Genetic linkage maps
2.4. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.2. Genetic manipulation
5.2.1. Mutation induction and somaclonal variation
6. Cryopreservation
7. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Importance
2. Breeding and Genetics
2.1. Breeding objectives
2.2. Breeding accomplishments
3. Molecular Genetics
4. Regeneration Through Axillary Branching
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.2. Somaclonal variation
5.3. Genetic transformation
5.4. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics
2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Functional genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration
4.1.1. Somatic embryogenesis
4.1.2. Recovery of triploids
4.2. Genetic manipulation
4.2.1. Genetic transformation
4.3. Cryopreservation
5. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
1.3.1. Rootstocks
1.3.2. Scions
1.3.3. Molecular genetics
2. Micropropagation
2.1. Explanting and shoot proliferation. 2.1.1. Juvenile material
2.1.2. Mature phase material
2.2. Rooting
2.3. Acclimatization
3. Embryo Culture
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration
5.1.1. Organogenesis
5.1.2. Somatic embryogenesis
5.1.3. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.3. In vitro storage
5.3.1. Low temperature storage
5.3.2. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
2. Molecular Genetics. 2.1. Gene cloning
2.2. Genomics
2.3. Genetic mapping and marker-assisted selection
2.3.1. Linkage and association mapping
2.3.2. Identification of genomic regions associated with traits of interest
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Protoplast isolation and culture
4.1.3. Haploid plant recovery
4.2. Genetic manipulation. 4.2.1. Mutation induction and selection
4.2.2. Genetic transformation
4.2.3. Cryopreservation
5. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
2. Molecular Genetics
2.1. Banana genome
2.2. Markers. 2.2.1. Morphological markers
2.2.2. Genome size estimation
2.2.3. Molecular markers
2.3. Gene identification
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Haploid recovery
4.1.3. Protoplast isolation and culture
4.2. Genetic manipulation. 4.2.1. Somaclonal variation and mutation induction
4.2.2. Genetic transformation
4.3. Cryopreservation
5. Conclusions
Acknowledgement
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Major breeding objectives
2. Molecular Genetics
2.1. Molecular markers
2.1.1. Linkage maps
2.2. Gene cloning
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Haploid recovery
4.1.3. Protoplast isolation and culture
5. Genetic Manipulation. 5.1. Mutation induction and somaclonal variation
5.2. Genetic transformation
5.3. In vitro storage
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
1.3.1. Rootstocks
1.3.2. Scions
2. Molecular Genetics. 2.1. Genomics-assisted breeding
2.2. Genetic mapping
2.3. Genome-wide association mapping studies
2.4. Genome sequencing
2.5. Transcriptomics
2.6. Olive genotyping
2.7. Gene characterization
2.8. Small RNAs
2.9. Genetic relationships among cultivated and wild olives and origin of olive cultivars
3. Micropropagation
4. Elimination of Viruses
5. Immature Embryo Culture
6. Somatic Cell Genetics. 6.1. Regeneration. 6.1.1. Organogenesis
6.1.2. Somatic embryogenesis
6.1.3. Haploid recovery
6.1.4. Polyploids
6.1.5. Protoplast isolation and culture
6.2. Genetic manipulation. 6.2.1. Somaclonal variation and mutation induction
6.2.2. Genetic transformation
7. Germplasm Conservation. 7.1. Slow growth conservation
7.2. Cryopreservation
8. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
1.3.1. Rootstocks
1.3.2. Scions
2. Molecular Genetics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration
4.1.1. Organogenesis
4.1.2. Manipulation of ploidy
5. Conclusions
References
1. Introduction
1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.2.1. SERK
2.2.2. D-type cyclin
2.2.3. NAC transcription factors
2.2.4. TCP transcription factors
2.3. Genomics. 2.3.1. Cytogenetic information and genome size
2.3.2. Plastid genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Organogenesis
5.1.2. Somatic embryogenesis
5.1.3. Haploid recovery
5.1.4. Triploid recovery
5.1.5. Tetraploid recovery
5.1.6. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics. 1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Molecular markers
2.2. Linkage maps
2.3. Marker-assisted selection
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Triploid recovery
4.1.3. Haploid recovery
4.1.4. Protoplast isolation and culture
4.2. Genetic manipulation. 4.2.1. Polyploidy induction
4.2.2. Mutagenesis
4.2.3. Genetic transformation
5. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics. 1.3.1. Major breeding objectives
1.3.2. Breeding accomplishments
2. Molecular Genetics. 2.1. Genomics
2.2. Bioinformatic resources
2.3. Markers and marker-assisted selection
2.4. Functional genomics
3. Micropropagation
4. Somatic Cell Genetics
4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Organogenesis
4.1.3. Haploid recovery
4.1.4. Protoplast isolation and culture
4.2. Genetic manipulation. 4.2.1. Mutation induction and somaclonal variation
4.2.2. Somatic hybridization
4.2.3. Genetic transformation
4.3. Cryopreservation
5. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
1.3.1. Rootstocks
1.3.2. Scions
2. Molecular Genetics. 2.1. Genomics. 2.1.1. Structural genomics
2.1.2. Functional genomics
2.2. Gene cloning
2.2.1. Map-based cloning of disease resistance genes
2.2.2. Map-based cloning of genes encoding other traits
2.2.3. Candidate gene approaches
2.3. Marker-assisted selection
2.3.1. Marker-assisted seedling selection
2.3.2. Marker-assisted parent selection
2.3.3. Background selection
2.3.4. From single traits to genome-wide selection
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Organogenesis
4.1.3. Haploid recovery
4.1.4. Protoplast technology
4.2. Genetic manipulation. 4.2.1. Mutation induction and somaclonal variation
4.2.2. Somatic hybridization
4.3. Genetic transformation
4.3.1. Transgenics with agronomically important traits
4.3.2. Cisgenesis and intragenesis
4.3.3. Virus-induced gene silencing
4.3.4. Rapid cycle breeding technology
4.3.5. Genome editing tools
4.3.6. Field trials and products
4.4. Cryopreservation
5. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Gene cloning and functional genomics
2.2. Molecular marker-assisted breeding
2.2.1. Characteristics of fruit
2.2.2. Chilling requirements
2.2.3. Resistance to diseases
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Genetic transformation
6. Cryopreservation
7. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics. 1.3.1. Rootstocks
1.3.2. Scions
2. Molecular Genetics. 2.1. Gene cloning and genomics
2.1.1. Resistance to sharka (PPV)
2.1.2. Self-compatibility
2.1.3. Chilling requirements
2.1.4. Fruit quality traits
2.2. Marker-assisted selection
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Organogenesis
5.1.2. Haploid recovery
5.1.3. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and in vitro selection
5.2.2. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics. 1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Gene cloning and genomics
2.1.1. Stone formation
2.1.2. PPV resistance
2.1.3. Self and cross-compatibility
2.1.4. Nematode resistance
2.1.5. Leaf scald resistance
2.2. Marker-assisted selection
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Organogenesis
5.1.2. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics. 2.1. Molecular markers
2.2. Linkage maps, QTL analysis and candidate genes
2.3. Gene cloning, characterization, expression and transcriptome analysis
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Triploid recovery
5.1.5. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scions
2. Molecular Genetics
2.1. Marker-assisted selection
2.2. Gene cloning and genomics
2.3. Transcriptomic studies
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration
5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutagenesis and somaclonal variation
5.2.2. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics
1.2.1. Rootstocks
1.2.2. Scion cultivars
2. Molecular Genetics
2.1. Genomics. 2.1.1. Development of pear markers
2.1.2. Development of SNP markers
2.1.3. Genetic maps
2.1.4. Sequence of the Asian and the European pear genomes
2.1.5. Genetic diversity and fingerprinting
2.2. Marker-assisted selection for major genes and QTLs
2.2.1. Pest and disease resistances
2.2.2. Fruit quality and tolerance of postharvest disorders
2.2.3. Dwarfing and compact tree habit
2.2.4. Marker-assisted selection and genomic selection
3. Micropropagation, Micrografting and In Vitro Conservation. 3.1. Micropropagation
3.2. Micrografting
3.3. In vitro conservation
4. Somatic Cell Genetics. 4.1. Regeneration. 4.1.1. Somatic embryogenesis
4.1.2. Organogenesis
4.1.3. Haploid recovery
4.1.4. Protoplast culture
4.2. Genetic manipulation. 4.2.1. Mutation induction
4.2.2. Somaclonal variation
4.2.3. Genetic transformation
5. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Breeding and genetics. 1.2.1. Major breeding objectives
1.2.2. Breeding accomplishments
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Organogenesis
5.1.2. Somatic embryogenesis
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Genetic transformation
5.3. Cryopreservation
6. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics. 1.3.1. Taxonomy and genetic diversity
1.3.2. Rootstocks
1.3.3. Scions
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Micrografting to Eliminate Viruses
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Triploid recovery
5.1.5. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.2.4. Virus-based vectors for citrus improvement
5.3. Cryopreservation
6. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics
1.3.1. Scions
2. Molecular Genetics. 2.1. Molecular markers
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Somatic Cell Genetics. 4.1. Regeneration
4.1.1. Somatic embryogenesis
4.1.2. Haploid recovery
4.1.3. Protoplast isolation and culture
4.2. Genetic manipulation. 4.2.1. Genetic transformation
4.2.2. Somatic hybridization
4.3. Cryopreservation
5. Conclusions
References
1. Introduction. 1.1. Botany and history
1.2. Importance
1.3. Breeding and genetics. 1.3.1. Rootstocks
1.3.2. Scions
2. Molecular Genetics. 2.1. Marker-assisted selection
2.2. Gene cloning
2.3. Genomics
3. Micropropagation
4. Micrografting
5. Somatic Cell Genetics. 5.1. Regeneration. 5.1.1. Somatic embryogenesis
5.1.2. Organogenesis
5.1.3. Haploid recovery
5.1.4. Triploid recovery
5.1.5. Protoplast isolation and culture
5.2. Genetic manipulation. 5.2.1. Mutation induction and somaclonal variation
5.2.2. Somatic hybridization
5.2.3. Genetic transformation
5.3. Cryopreservation
6. Conclusions
Acknowledgements
References