Fermentation Processes: Emerging and Conventional Technologies

Fermentation Processes: Emerging and Conventional Technologies
Автор книги: id книги: 1940323     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21456,7 руб.     (198,65$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119505839 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explores the use of conventional and novel technologies to enhance fermentation processes Fermentation Processes reviews the application of both conventional and emerging technologies for enhancing fermentation conditions, examining the principles and mechanisms of fermentation processes, the microorganisms used in bioprocesses, their implementation in industrial fermentation, and more. Designed for scientists and industry professionals alike, this authoritative and up-to-date volume describes how non-conventional technologies can be used to increase accessibly and bioavailability of substrates by microorganisms during fermentation, which in turn promotes microbial growth and can improve processes and productivity across the agri-food, nutraceutical, pharmaceutical, and beverage industries. The text begins by covering the conventional fermentation process, discussing cell division and growth kinetics, current technologies and developments in industrial fermentation processes, the parameters and modes of fermentation, various culture media, and the impact of culture conditions on fermentation processes. Subsequent chapters provide in-depth examination of the use of emerging technologies—such as pulsed electric fields, ultrasound, high-hydrostatic pressure, and microwave irradiation—for biomass fractionation and microbial stimulation. This authoritative resource: Explores emerging technologies that shorten fermentation time, accelerate substrate consumption, and increase microbial biomass Describes enhancing fermentation at conventional conditions by changing oxygenation, agitation, temperature, and other medium conditions Highlights the advantages of new technologies, such as reduced energy consumption and increased efficiency Discusses the integration and implementation of conventional and emerging technologies to meet consumer and industry demand Offers perspectives on the future direction of fermentation technologies and applications Fermentation Processes: Emerging and Conventional Technologies is ideal for microbiologists and bioprocess technologists in need of an up-to-date overview of the subject, and for instructors and students in courses such as bioprocess technology, microbiology, new product development, fermentation, food processing, biotechnology, and bioprocess engineering.

Оглавление

Группа авторов. Fermentation Processes: Emerging and Conventional Technologies

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Fermentation Processes. Emerging and Conventional Technologies

About the Editors

List of Contributors

Preface

1 Introduction to Conventional Fermentation Processes

1.1 Bioprocesses

1.1.1 Production of Microbial Biomass

1.1.2 Production of Microbial Metabolites

1.1.3 Production of Microbial Enzymes

1.1.4 Production of Recombinant Proteins

1.1.5 Production of Microbial Plasmids

1.1.6 Bioconversion

1.2 Energetic Metabolism

1.2.1 Energy Transfer and Redox Reactions

1.2.2 Aerobic Respiration

1.2.2.1 Glycolysis Pathway

1.2.2.2 Citric Acid Cycle

1.2.2.3 Electron Transport Chain and Oxidative Phosphorylation

1.2.3 Anaerobic Respiration

1.2.4 Fermentation

1.3 Microorganisms Used in Fermentation Processes

1.3.1 Bacteria

1.3.1.1 The Proteobacteria

1.3.1.2 The Gram‐Positive Eubacteria

1.3.2 Fungi

1.4 Fermentation Technology

1.5 Conclusions

References

2 Current Developments in Industrial Fermentation Processes

2.1 Introduction

2.2 Main Achievements in Industrial Fermentation

2.2.1 Fermentation Processes in Food Industry

2.2.1.1 Alcoholic Beverages

2.2.1.2 Enzymes

2.2.2 Fermentation Processes in Chemical Industry

2.2.2.1 Biofuels

2.2.2.2 Organic Acids

2.2.2.3 Triacylglycerols and Polyhydroxyalkanoates

2.2.2.4 Syngas Fermentation

2.2.3 Fermentation Processes in the Pharmaceutical Industry

2.2.3.1 Drugs

2.2.3.2 Recombinant Proteins

2.3 Current Developments in Industrial Fermentation

2.3.1 Microorganisms

2.3.2 Fermentation Media

2.3.2.1 Types of Media Sources

2.3.2.1.1 Carbon Sources

2.3.2.1.2 Nitrogen Sources

2.3.3 Fermentation Systems

2.3.3.1 Solid‐State Fermentation Bioreactors

2.3.3.1.1 Static Bioreactors

Fixed Bed Bioreactors

Perforated Trays Bioreactors

Fluidized‐Bed Bioreactors

2.3.3.1.2 Stirred Bioreactors

Koji Bioreactors

Horizontal Drum

Mixing Bioreactor

Rotating Drum

2.3.3.1.3 Recent Patents in Solid‐State Fermentation Bioreactors

2.3.3.2 Ultrasonic Fermentation Process

2.3.3.2.1 High‐Frequency Ultrasound in Fermentation

2.3.3.2.2 Low‐Frequency Ultrasound

2.3.3.3 Electrofermentation

2.3.4 Fermentation Optimization

2.3.5 Fermentation Process Modeling

2.3.5.1 Mechanistic Models

2.3.5.2 Computational fluid dynamics

2.3.6 Inhibition of Fermentation Processes

2.3.6.1 Substrate Inhibition

2.3.6.2 pH Inhibition

2.3.6.3 Inhibition by Undissociated Acids

2.3.6.4 Temperature Inhibition

2.3.6.5 Nitrogen Inhibition

2.3.6.6 Inhibition by Phosphate

2.3.6.7 Inhibition by Sulfide

2.3.6.8 Inhibition by Lactic Acid Bacteria

2.3.6.9 Inhibition by Metals

2.3.6.10 Inhibition by Phenolic and Furanic Mixtures

2.4 Conclusions

References

3 Culture Condition Changes for Enhancing Fermentation Processes

3.1 Introduction

3.2 Culture Media Used for Fermentation. 3.2.1 The Culture Media Purpose

3.2.2 Media Types

3.2.2.1 Synthetic Media

3.2.2.2 Semi‐synthetic Media

3.2.2.3 Complex Media

3.2.2.4 Defined Mineral Media

3.2.3 Culture Media: A Quantitative Approach

3.2.4 Culture Media: A Compositional Approach

3.2.4.1 Water

3.2.4.2 Energy Sources

3.2.4.3 Carbon Sources

3.2.4.4 Examples of Commonly Used Carbon Sources. 3.2.4.4.1 Carbohydrates

3.2.4.4.2 Glucose

3.2.4.4.3 Sucrose

3.2.4.4.4 Lactose

3.2.4.4.5 Oils and Fats

3.2.4.4.6 Hydrocarbons and Their Derivatives

3.2.4.4.7 Other Carbon Sources

3.2.4.5 Nitrogen Sources

3.2.4.5.1 Ammonia

3.2.4.5.2 Nitrogen‐Based Salts

3.2.4.5.3 Complex Nitrogen Sources

3.2.4.6 Minerals

3.2.4.7 Chelators

3.2.4.8 Growth Factors

3.2.4.9 Buffers

3.2.4.10 Precursors and Metabolic Regulators to Media

3.2.4.11 Precursors and Inhibitors

3.2.5 Impact of Culture Conditions on Fermentation Processes

3.2.5.1 The Temperature

3.2.5.2 The pH

3.2.5.3 The Cell Concentration

3.2.5.4 The Carbon Dioxide

3.2.5.5 The Ethanol

3.3 Metabolic Approaches

3.3.1 Pasteur Effect

3.3.2 Crabtree Effect

3.3.3 Custer Effect

3.3.4 Oxygen Requirements

3.3.5 Oxygen Function in Fermentation

3.4 Conclusions

References

4 Emerging Technologies and Their Mechanism of Action on Fermentation

4.1 Introduction

4.2 HHP Processing

4.3 Ultrasound

4.4 Pulsed Electric Fields

4.5 Microwaves

4.6 Conclusions

Acknowledgments

References

5 Biomass Fractionation Using Emerging Technologies

5.1 Introduction

5.2 Ultrasound Application for Biomass Fractionation

5.3 Microwave Application for Biomass Fractionation

5.4 PEF Application for Biomass Fractionation

5.5 Enzyme‐Assisted Fractionation of Biomass

5.6 SCF Fractionation of Biomass

5.7 Conclusions

References

6 Enhancing Microbial Growth Using Emerging Technologies

6.1 Introduction

6.2 Microbial Stimulation Using EFs

6.3 Stimulation Using US

6.4 Microbial Stimulation Using HP

6.5 Conclusions

Acknowledgments

References

7 Application of Fermentation to Recover High‐Added Value Compounds from Food By‐Products : Antifungals and Antioxidants

7.1 Introduction

7.2 Food Industry By‐Products and Global Estimates

7.3 Food By‐Products as Sources of Antifungals or Antioxidants

7.3.1 Fruit

7.3.2 Cereals

7.3.3 Dairy Products

7.3.4 Meat

7.3.5 Seafood

7.4 Fermentation as a Strategy for Food By‐Product Valorization

7.5 Recovery of High‐Added Value Compounds from Food By‐Products. 7.5.1 Plant‐Derived

7.5.2 Dairy Foods

7.5.3 Animal Foods

7.6 Technical and Economical Hurdles in Fermentation Assisted Recovery

7.7 Conclusions and Future Outlook

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

y

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Mohamed Koubaa

.....

During fermentation, all ATP is produced solely by glycolysis, which implies a much lower energy yield compared to aerobic respiration (2 mol of ATP against 38 in prokaryotes). Considering that glucose oxidation is partial, a large part of the energy originally contained in glucose remains stored in the chemical bonds of the final fermentation product (e.g. ethanol, lactic acid, etc.). Fermentation microorganisms must, therefore, compensate for this shortfall by the oxidation of a larger quantity of substrate.

Figure 1.4 Schematic representation of fermentation and energy generation.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Fermentation Processes: Emerging and Conventional Technologies
Подняться наверх