Integration of Cloud Computing with Internet of Things

Integration of Cloud Computing with Internet of Things
Автор книги: id книги: 2007019     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21722,2 руб.     (216,75$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119769309 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The book aims to integrate the aspects of IoT, Cloud computing and data analytics from diversified perspectives. The book also plans to discuss the recent research trends and advanced topics in the field which will be of interest to academicians and researchers working in this area. Thus, the book intends to help its readers to understand and explore the spectrum of applications of IoT, cloud computing and data analytics. Here, it is also worth mentioning that the book is believed to draw attention on the applications of said technology in various disciplines in order to obtain enhanced understanding of the readers. Also, this book focuses on the researches and challenges in the domain of IoT, Cloud computing and Data analytics from perspectives of various stakeholders.

Оглавление

Группа авторов. Integration of Cloud Computing with Internet of Things

Table of Contents

List of Figures

List of Tables

Guide

Pages

Integration of Cloud Computing with Internet of Things. Foundations, Analytics, and Applications

Preface

Acknowledgements

1. Internet of Things: A Key to Unfasten Mundane Repetitive Tasks

1.1 Introduction

1.2 The IoT Scenario

1.3 The IoT Domains. 1.3.1 The IoT Policy Domain

1.3.2 The IoT Software Domain

1.3.2.1 IoT in Cloud Computing (CC)

1.3.2.2 IoT in Edge Computing (EC)

1.3.2.3 IoT in Fog Computing (FC)

1.3.2.4 IoT in Telecommuting

1.3.2.5 IoT in Data-Center

1.3.2.6 Virtualization-Based IoT (VBIoT)

1.4 Green Computing (GC) in IoT Framework

1.5 Semantic IoT (SIoT)

1.5.1 Standardization Using oneM2M

1.5.2 Semantic Interoperability (SI)

1.5.3 Semantic Interoperability (SI) Security

1.5.4 Semantic IoT vs Machine Learning

1.6 Conclusions

References

2. Measures for Improving IoT Security

2.1 Introduction

2.2 Perceiving IoT Security

2.3 The IoT Safety Term

2.4 Objectives. 2.4.1 Enhancing Personal Data Access in Public Repositories

2.4.2 Develop and Sustain Ethicality

2.4.3 Maximize the Power of IoT Access

2.4.4 Understanding Importance of Firewalls

2.5 Research Methodology

2.6 Security Challenges

2.6.1 Challenge of Data Management

2.7 Securing IoT. 2.7.1 Ensure User Authentication

2.7.2 Increase User Autonomy

2.7.3 Use of Firewalls

2.7.4 Firewall Features

2.7.5 Mode of Camouflage

2.7.6 Protection of Data

2.7.7 Integrity in Service

2.7.8 Sensing of Infringement

2.8 Monitoring of Firewalls and Good Management. 2.8.1 Surveillance

2.8.2 Forensics

2.8.3 Secure Firewalls for Private

2.8.4 Business Firewalls for Personal

2.8.5 IoT Security Weaknesses

2.9 Conclusion

References

3. An Efficient Fog-Based Model for Secured Data Communication

3.1 Introduction

3.1.1 Fog Computing Model

3.1.2 Correspondence in IoT Devices

3.2 Attacks in IoT

3.2.1 Botnets

3.2.2 Man-In-The-Middle Concept

3.2.3 Data and Misrepresentation

3.2.4 Social Engineering

3.2.5 Denial of Service

3.2.6 Concerns

3.3 Literature Survey

3.4 Proposed Model for Attack Identification Using Fog Computing

3.5 Performance Analysis

3.6 Conclusion

References

4. An Expert System to Implement Symptom Analysis in Healthcare

4.1 Introduction

4.2 Related Work

4.3 Proposed Model Description and Flow Chart. 4.3.1 Flowchart of the Model

4.3.1.1 Value of Symptoms

4.3.1.2 User Interaction Web Module

4.3.1.3 Knowledge-Base

4.3.1.4 Convolution Neural Network

4.3.1.5 CNN-Fuzzy Inference Engine

4.4 UML Analysis of Expert Model

4.4.1 Expert Module Activity Diagram

4.4.2 Ontology Class Collaboration Diagram

4.5 Ontology Model of Expert Systems

4.6 Conclusion and Future Scope

References

5. An IoT-Based Gadget for Visually Impaired People

5.1 Introduction

5.2 Related Work

5.3 System Design

5.4 Results and Discussion

5.5 Conclusion

5.6 Future Work

References

6. IoT Protocol for Inferno Calamity in Public Transport

6.1 Introduction

6.2 Literature Survey

6.3 Methodology

6.3.1 IoT Message Exchange With Cloud MQTT Broker Based on MQTT Protocol

6.3.2 Hardware Requirement

6.4 Implementation

6.4.1 Interfacing Diagram

6.5 Results

6.6 Conclusion and Future Work

References

7. Traffic Prediction Using Machine Learning and IoT

7.1 Introduction

7.1.1 Real Time Traffic

7.1.2 Traffic Simulation

7.2 Literature Review

7.3 Methodology

7.4 Architecture

7.4.1 API Architecture

7.4.2 File Structure

7.4.3 Simulator Architecture

7.4.4 Workflow in Application

7.4.5 Workflow of Google APIs in the Application

7.5 Results

7.5.1 Traffic Scenario

7.5.1.1 Low Traffic

7.5.1.2 Moderate Traffic

7.5.1.3 High Traffic

7.5.2 Speed Viewer

7.5.3 Traffic Simulator

7.5.3.1 1st View

7.5.3.2 2nd View

7.5.3.3 3rd View

7.6 Conclusion and Future Scope

References

8. Application of Machine Learning in Precision Agriculture

8.1 Introduction

8.2 Machine Learning

8.2.1 Supervised Learning

8.2.2 Unsupervised Learning

8.2.3 Reinforcement Learning

8.3 Agriculture

8.4 ML Techniques Used in Agriculture

8.4.1 Soil Mapping

8.4.2 Seed Selection

8.4.3 Irrigation/Water Management

8.4.4 Crop Quality

8.4.5 Disease Detection

8.4.6 Weed Detection

8.4.7 Yield Prediction

8.5 Conclusion

References

9. An IoT-Based Multi Access Control and Surveillance for Home Security

9.1 Introduction

9.2 Related Work

9.3 Hardware Description

9.3.1 Float Sensor

9.3.2 Map Matching

9.3.3 USART Cable

9.4 Software Design

9.5 Conclusion

References

10. Application of IoT in Industry 4.0 for Predictive Analytics

10.1 Introduction

10.2 Past Literary Works. 10.2.1 Maintenance-Based Monitoring

10.2.2 Data Driven Approach to RUL Finding in Industry

10.2.3 Philosophy of Industrial-IoT Systems and its Advantages in Different Domain

10.3 Methodology and Results

10.4 Conclusion

References

11. IoT and Its Role in Performance Enhancement in Business Organizations

11.1 Introduction

11.1.1 Scientific Issues in IoT

11.1.2 IoT in Organizations

11.1.3 Technology and Business

11.1.4 Rewards of Technology in Business

11.1.5 Shortcomings of Technology in Business

11.1.6 Effect of IoT on Work and Organization

11.2 Technology and Productivity

11.3 Technology and Future of Human Work

11.4 Technology and Employment

11.5 Conclusion

References

12. An Analysis of Cloud Computing Based on Internet of Things

12.1 Introduction

12.1.1 Generic Architecture

12.2 Challenges in IoT

12.3 Technologies Used in IoT

12.4 Cloud Computing

12.4.1 Service Models of Cloud Computing

12.5 Cloud Computing Characteristics

12.6 Applications of Cloud Computing

12.7 Cloud IoT

12.8 Necessity for Fusing IoT and Cloud Computing

12.9 Cloud-Based IoT Architecture

12.10 Applications of Cloud-Based IoT

12.11 Conclusion

References

13. Importance of Fog Computing in Emerging Technologies-IoT

13.1 Introduction

13.2 IoT Core

13.3 Need of Fog Computing

References

14. Convergence of Big Data and Cloud Computing Environment

14.1 Introduction

14.2 Big Data: Historical View

14.2.1 Big Data: Definition

14.2.2 Big Data Classification

14.2.3 Big Data Analytics

14.3 Big Data Challenges

14.4 The Architecture

14.4.1 Storage or Collection System

14.4.2 Data Care

14.4.3 Analysis

14.5 Cloud Computing: History in a Nutshell

14.5.1 View on Cloud Computing and Big Data

14.6 Insight of Big Data and Cloud Computing

14.6.1 Cloud-Based Services

14.6.2 At a Glance: Cloud Services

14.7 Cloud Framework

14.7.1 Hadoop

14.7.2 Cassandra

14.7.2.1 Features of Cassandra

14.7.3 Voldemort

14.7.3.1 A Comparison With Relational Databases and Benefits

14.8 Conclusions

14.9 Future Perspective

References

15. Data Analytics Framework Based on Cloud Environment

15.1 Introduction

15.2 Focus Areas of the Chapter

15.3 Cloud Computing

15.3.1 Cloud Service Models

15.3.1.1 Software as a Service (SaaS)

15.3.1.2 Platform as a Service (PaaS)

15.3.1.3 Infrastructure as a Service (IaaS)

15.3.1.4 Desktop as a Service (DaaS)

15.3.1.5 Analytics as a Service (AaaS)

15.3.1.6 Artificial Intelligence as a Service (AIaaS)

15.3.2 Cloud Deployment Models

15.3.3 Virtualization of Resources

15.3.4 Cloud Data Centers

15.4 Data Analytics

15.4.1 Data Analytics Types. 15.4.1.1 Descriptive Analytics

15.4.1.2 Diagnostic Analytics

15.4.1.3 Predictive Analytics

15.4.1.4 Prescriptive Analytics

15.4.1.5 Big Data Analytics

15.4.1.6 Augmented Analytics

15.4.1.7 Cloud Analytics

15.4.1.8 Streaming Analytics

15.4.2 Data Analytics Tools

15.5 Real-Time Data Analytics Support in Cloud

15.6 Framework for Data Analytics in Cloud

15.6.1 Data Analysis Software as a Service (DASaaS)

15.6.2 Data Analysis Platform as a Service (DAPaaS)

15.6.3 Data Analysis Infrastructure as a Service (DAIaaS)

15.7 Data Analytics Work-Flow

15.8 Cloud-Based Data Analytics Tools

15.8.1 Amazon Kinesis Services

15.8.2 Amazon Kinesis Data Firehose

15.8.3 Amazon Kinesis Data Streams

15.8.4 Amazon Textract

15.8.5 Azure Stream Analytics

15.9 Experiment Results

15.10 Conclusion

References

16. Neural Networks for Big Data Analytics

16.1 Introduction

16.2 Neural Networks—An Overview

16.3 Why Study Neural Networks?

16.4 Working of Artificial Neural Networks. 16.4.1 Single-Layer Perceptron

16.4.2 Multi-Layer Perceptron

16.4.3 Training a Neural Network

16.4.4 Gradient Descent Algorithm

16.4.5 Activation Functions

16.5 Innovations in Neural Networks. 16.5.1 Convolutional Neural Network (ConvNet)

16.5.2 Recurrent Neural Network

16.5.3 LSTM

16.6 Applications of Deep Learning Neural Networks

16.7 Practical Application of Neural Networks Using Computer Codes

16.8 Opportunities and Challenges of Using Neural Networks

16.9 Conclusion

References

17. Meta-Heuristic Algorithms for Best IoT Cloud Service Platform Selection

17.1 Introduction

17.2 Selection of a Cloud Provider in Federated Cloud

17.3 Algorithmic Solution

17.3.1 TLBO Algorithm (Teaching-Learning-Based Optimization Algorithm)

17.3.1.1 Teacher Phase: Generation of a New Solution

17.3.1.2 Learner Phase: Generation of New Solution

17.3.1.3 Representation of the Solution

17.3.2 JAYA Algorithm

17.3.2.1 Representation of the Solution

17.3.3 Bird Swarm Algorithm

17.3.3.1 Forging Behavior

17.3.3.2 Vigilance Behavior

17.3.3.3 Flight Behavior

17.3.3.4 Representation of the Solution

17.4 Analyzing the Algorithms

17.5 Conclusion

References

18. Legal Entanglements of Cloud Computing In India

18.1 Cloud Computing Technology

18.2 Cyber Security in Cloud Computing

18.3 Security Threats in Cloud Computing

18.3.1 Data Breaches

18.3.2 Denial of Service (DoS)

18.3.3 Botnets

18.3.4 Crypto Jacking

18.3.5 Insider Threats

18.3.6 Hijacking Accounts

18.3.7 Insecure Applications

18.3.8 Inadequate Training

18.3.9 General Vulnerabilities

18.4 Cloud Security Probable Solutions. 18.4.1 Appropriate Cloud Model for Business

18.4.2 Dedicated Security Policies Plan

18.4.3 Multifactor Authentication

18.4.4 Data Accessibility

18.4.5 Secure Data Destruction

18.4.6 Encryption of Backups

18.4.7 Regulatory Compliance

18.4.8 External Third-Party Contracts and Agreements

18.5 Cloud Security Standards

18.6 Cyber Security Legal Framework in India

18.7 Privacy in Cloud Computing—Data Protection Standards

18.8 Recognition of Right to Privacy

18.9 Government Surveillance Power vs Privacy of Individuals

18.10 Data Ownership and Intellectual Property Rights

18.11 Cloud Service Provider as an Intermediary

18.12 Challenges in Cloud Computing. 18.12.1 Classification of Data

18.12.2 Jurisdictional Issues

18.12.3 Interoperability of the Cloud

18.12.4 Vendor Agreements

18.13 Conclusion

References

19. Securing the Pharma Supply Chain Using Blockchain

19.1 Introduction

19.2 Literature Review

19.2.1 Current Scenario

19.2.2 Proposal

19.3 Methodology

19.4 Results

19.5 Conclusion and Future Scope

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

Figure 1.9 The steps of SIoT (SEG 3.0 methodology) [27].

A generalized SIoT architecture is shown in Figure 1.11.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Integration of Cloud Computing with Internet of Things
Подняться наверх