Industrial Carbon and Graphite Materials
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Industrial Carbon and Graphite Materials
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Industrial Carbon and Graphite Materials
Industrial Carbon and Graphite Materials
Preface
1 Introduction: The Future of Carbon Materials – The Industrial Perspective
1.1 Overview
1.2 Traditional Carbon and Graphite Materials
1.3 Modern Application of Carbon Materials
1.4 Future Application of Carbon Materials
1.5 Conclusion
2 The Element Carbon*
2.1 Introduction
2.2 Diamond
2.3 Graphite
2.4 Non‐graphitic Carbon
2.5 Carbyne and Chaoite
2.6 Nanoforms of Carbon
References
Further Reading
Note
3 History of Carbon Materials
3.1 Origin of Elemental Carbon
3.2 Formation and Economic Development of Natural Diamonds
3.3 Formation and Use of Natural Graphite
3.4 History of Charcoal from Wood and Coke from Coal
3.5 History of Carbon Black
3.6 History of Activated Carbon
3.7 Development of Synthetic Graphite
3.8 Development of Synthetic Diamonds
3.9 Development of Carbon Fibers
3.10 Discovery and Inventions of Nanocarbons: Fullerenes, Nanotubes, and Graphene
References
Note
4 Recommended Terminology for the Description of Carbon as a Solid (© 1995 IUPAC)
List of Terms
Description of the Terms. Acetylene Black. Description
Notes
Acheson Graphite. Description
Notes
Activated Carbon. Description
Notes
Activated Charcoal. Description
Agranular Carbon. Description
Notes
Amorphous Carbon. Description
Notes
Artificial Graphite. Description
Notes
Baking. Description
Binder. Description
Binder Coke. Description
Notes
Brooks and Taylor Structure in the Carbonaceous Mesophase. Description
Notes
Bulk Mesophase. Description
Notes
Calcined Coke. Description
Notes
Carbon. Description
Notes
Carbon Artifact. Description
Notes
Carbon Black. Description
Notes
Carbon–Carbon Composite. Description
Carbon Cenospheres. Description
Carbon Cloth. Description
Notes
Carbon Electrode. Description
Notes
Carbon Felt. Description
Notes
Carbon Fiber. Description
Notes
Carbon Fiber Fabrics. Description
Carbon Fibers Type HM. Description
Notes
Carbon Fibers Type HT. Description
Notes
Carbon Fibers Type IM. Description
Notes
Carbon Fibers Type LM (Low Modulus) Description
Notes
Carbon Fibers Type UHM. Description
Carbon Material. Description
Notes
Carbon Mix. Description
Carbon Whiskers. Description
Carbonaceous Mesophase. Description
Notes
Carbonization. Description
Notes
Catalytic Graphitization. Description
Notes
Char. Description
Notes
Charcoal. Description
Notes
Coal‐Derived Pitch Coke. Description
Notes
Coal‐Tar Pitch. Description
Notes
Coalification. Description
Notes
Coke. Description
Notes
Coke Breeze. Description
Colloidal Carbon. Description
Notes
Delayed Coke. Description
Notes
Delayed Coking Process. Description
Notes
Diamond. Description
Notes
Diamond by CVD. Description
Notes
Diamond‐Like Carbon Films. Description
Notes
Electrographite. Description
Exfoliated Graphite. Description
Notes
Fibrous Activated Carbon. Description
Notes
Fibrous Carbon. Description
Filamentous Carbon. Description
Notes
Filler. Description
Filler Coke. Description
Notes
Fluid Coke. Description
Notes
Fullerenes. Description
Notes
Furnace Black. Description
Notes
Gas‐Phase‐Grown Carbon Fibers. Description
Notes
Glass‐Like Carbon. Description
Notes
Granular Carbon. Description
Notes
Graphene Layer. Description
Notes
Graphite. Description
Notes
Graphite Electrode. Description
Graphite Fibers. Description
Notes
Graphite Material. Description
Notes
Graphite Whiskers. Description
Notes
GRAPHITIC CARBON. Description
Notes
Graphitizable Carbon. Description
Notes
Graphitization. Description
Notes
Graphitization Heat Treatment. Description
Notes
Graphitized Carbon. Description
Notes
Green Coke. Description
Notes
Hard Amorphous Carbon Films. Description
Hexagonal Graphite. Description
Notes
High‐Pressure Graphitization. Description
Highly Oriented Pyrolytic Graphite. Description
Notes
Isotropic Carbon. Description
Notes
Isotropic Pitch‐Based Carbon Fibers. Description
Notes
Lamp Black. Description
Mesogenic Pitch. Description
Mesophase Pitch. Description
Notes
Mesophase Pitch‐Based Carbon Fibers. Description
Metallurgical Coke. Description
Notes
Microporous Carbon. Description
Notes
MPP‐Based Carbon Fibers. Description
Natural Graphite. Description
Notes
Needle Coke. Description
Notes
Non‐graphitic Carbon. Description
Notes
Non‐graphitizable Carbon. Description
Notes
Nuclear Graphite. Description
Notes
Pan‐Based Carbon Fibers. Description
Particulate Carbon. Description
Notes
Petroleum Coke. Description
Notes
Petroleum Pitch. Description
Notes
Pitch. Description
Notes
Pitch‐Based Carbon Fibers. Description
Notes
Polycrystalline Graphite. Description
Notes
Polygranular Carbon. Description
Notes
Polygranular Graphite. Description
Notes
Premium Coke. Description
Notes
Puffing. Description
Notes
Puffing Inhibitor. Description
Notes
Pyrolytic Carbon. Description
Notes
Pyrolytic Graphite. Description
Notes
Raw Coke. Description
Notes
Rayon‐Based Carbon Fibers. Description
Notes
Regular Coke. Description
Notes
Rhombohedral Graphite. Description
Notes
Semicoke. Description
Notes
Soot. Description
Notes
Spherical Carbonaceous Mesophase. Description
Stabilization Treatment of Thermoplastic Precursor Fibers for Carbon Fibers. Description
Notes
Stress Graphitization. Description
Notes
Synthetic Graphite. Description
Notes
Thermal Black. Description
References
Note
5 Graphite*
5.1 Graphite Single Crystal
5.2 Natural Graphite. 5.2.1 Occurrence and Properties
5.3 Synthetic Graphite
References
Further Reading
Notes
6.1 Introduction to Polygranular Carbon and Graphite Materials
References
6.1.1 Polygranular Carbon and Graphite Materials
6.1.1.1 The Relevance of Raw Materials
6.1.1.1.1 Petroleum Coke
6.1.1.1.2 Coal‐Tar Pitch Coke
6.1.1.1.3 Anthracite
6.1.1.1.4 Binder Materials
6.1.1.1.4.1 Coal‐Tar Pitch
6.1.1.1.4.2 Petroleum Pitch
6.1.1.1.4.3 Thermosetting Resins
References
Further Reading
Note
6.1.2 Petroleum Coke*
6.1.2.1. Introduction
6.1.2.2. Physical and Chemical Properties. 6.1.2.2.1 Physical Properties
6.1.2.2.2 Chemical Properties and Composition
6.1.2.3. Production
6.1.2.3.1 Production Processes
6.1.2.3.1.1 Delayed Coking
6.1.2.3.1.2 Fluid Coking
6.1.2.3.1.3 Flexicoking
6.1.2.3.2 Calcination
6.1.2.3.2.1 Rotary Kiln Calciner
6.1.2.3.2.2 Rotary Hearth Calciner
6.1.2.3.2.3 Shaft Kiln Calciner
6.1.2.4. Uses and Economic Aspects
6.1.2.4.1 Green Petroleum Coke
6.1.2.4.2 Calcined Petroleum Coke. 6.1.2.4.2.1 Anode‐Grade Coke (Regular Calcinate)
6.1.2.4.2.2 Needle Coke
6.1.2.5. Quality Aspects
6.1.2.5.1 Green Coke
6.1.2.5.2 Regular Calcinate
6.1.2.5.3 Needle Coke
6.1.2.6. Environmental and Safety Aspects. 6.1.2.6.1 Green Coke
6.1.2.6.2 Calcined Petroleum Coke
References
Further Reading
Note
6.1.3 Coal-Tar Pitch Coke
6.1.3.1. Introduction
6.1.3.2. Physical and Chemical Properties. 6.1.3.2.1 Physical Properties
6.1.3.2.2 Chemical Properties
6.1.3.3. Production of Pitch Coke
6.1.3.3.1 Production Process
6.1.3.3.1.1 Chamber Coking Process
6.1.3.3.1.2 Delayed Coker and Calciner
6.1.3 Delayed Coking
6.1.3 Calcination
6.1.3.4. Uses
6.1.3.4.1 Aggregate of Graphite Electrode for Aluminum Smelting
6.1.3.4.2 Aggregate for Graphite Electrode in Electric Arc Furnace Steelmaking
6.1.3.5. Environmental and Safety Aspects
References
6.1.4 Natural Graphite*
6.1.4.1. Occurrence and Classification
6.1.4.2. Mining and Cleaning
6.1.4.3. Applications of Natural Graphite
6.1.4.4. Economic Aspects
References
Note
6.1.5 Tar and Pitch*
6.1.5.1. Origin, Classification, and Industrial Importance of Tars and Pitches. 6.1.5.1.1 Origin and Classification
6.1.5.1.2 History
6.1.5.1.3 Industrial Importance
6.1.5.2. Properties
6.1.5.3. Processing of Coke‐Oven Coal Tar. 6.1.5.3.1 Survey
6.1.5.3.2 Primary Distillation
6.1.5.3.3 Processing of Coal‐Tar Pitch. 6.1.5.3.3.1 Cooling
6.1.5.3.3.2 Production of Electrode Pitch
6.1.5.3.3.3 Production of Special Pitches
6.1.5.3.4 Processing of Tar Distillates
6.1.5.3.4.1 Carbon Black Oils
6.1.5.3.4.2 Impregnating Oils
6.1.5.3.4.3 Fuel oils
6.1.5.3.4.4 Diesel Fuels
6.1.5.3.4.5 Fluxing Oils
6.1.5.4. Processing of Low‐Temperature Coal Tars
6.1.5.5. Processing of Other Tars and Tarlike Raw Materials. 6.1.5.5.1 Lignite Tars
6.1.5.5.2 Peat Tars
6.1.5.5.3 Wood Tars
6.1.5.5.4 Oil‐Shale Tars
6.1.5.5.5 Pyrolysis Residual Oils
6.1.5.6. Uses of Tar Products and Their Economic Importance
6.1.5.7. Toxicology and Ecotoxicology. 6.1.5.7.1 Toxicology
6.1.5.7.2 Ecotoxicology
6.1.5.7.3 Classification and Legislation
References
Notes
6.1.6 Thermosetting Resins*
References
Note
6.2 Manufacturing*
6.2.1. Grinding and Sizing
6.2.2. Mixing
6.2.3 Forming
6.2.3.1 Molding
6.2.3.2 Isostatic Molding
6.2.3.3 Vibration Molding
6.2.3.4 Other Forming Methods
6.2.4. Baking
6.2.4.1 Ring Furnace
6.2.4.2 Car‐Bottom Furnace/Single‐Chamber Furnace
6.2.4.3 Tunnel Kiln
6.2.4.4 Other Furnaces
6.2.5. Graphitization
6.2.5.1 Acheson Furnace
6.2.5.2 Castner Furnace
6.2.5.3 Induction Furnace
6.2.5.4 Radiation Heating
6.2.6. Purification
6.2.7. Machining
6.2.8. Impregnation and Surface Coating
References
Note
6.3 Environmental, Health and Safety Aspects of the Production of Carbon and Graphite*
6.3.1 Environmental Aspects. 6.3.1.1 Raw Materials
6.3.1.2 Processes and Energy
6.3.2. Occupational Safety and Health Aspects. 6.3.2.1 Coal Tar Pitch
6.3.2.2 Risk Strategy for Benzopyrene
6.3.2.3 Gases
6.3.2.4 Electric Current
6.3.2.5 Dust
6.3.3. Process Safety
References
Note
6.4 Properties of Polygranular Carbon and Graphite Materials*
6.4.1. Physical Properties
6.4.2. Chemical Properties
References
Further Reading
Note
6.5 Applications
6.5.1 Prebaked Anodes for Aluminum Electrolysis
6.5.1.1. Introduction
6.5.1.2. The Electrolysis Cell
6.5.1.3. The Role of Anodes in the Pots. 6.5.1.3.1 Current Conductor Aspects
6.5.1.3.2 Thermal Aspects
6.5.1.3.3 Anode Failure and Consumption Mechanisms
6.5.1.3.4 Carbon Consumption Figures
6.5.1.4. The Cost of Al Production Related to the Anodes
6.5.1.5. The Anode Manufacture for Large Modern Smelters
6.5.1.6. The Raw Materials
6.5.1.7. The Green Mill. 6.5.1.7.1 Dry Aggregate Preparation
6.5.1.7.2 Paste and Green Block Production
6.5.1.7.3 The Baking Furnace
6.5.1.7.4 Anode Slotting
6.5.1.7.5 Anode Rodding
6.5.1.7.6 Anode Quality Control
6.5.1.8. Outlook
References
6.5.2 Cathodes for Aluminum Electrolysis
6.5.2.1. Cathodes in the Aluminum Smelting Process
6.5.2.2. Cathode Classification
6.5.2.3. Cathode Lifetime
6.5.2.4. Wettable Cathodes
6.5.2.5. Surface‐Profiled Cathodes
6.5.2.6. Spent Potlining
References
Further Reading
6.5.3 Graphite Electrodes for Electric Arc Furnaces
6.5.3.1 Graphite Electrodes for Electric Arc Furnaces
6.5.3.1.1 Steel Production
6.5.3.1.1.1 The Era of Iron and Steel
6.5.3.1.1.2 Steel Recycling in an Electric Arc Furnace
6.5.3.1.1.3 Steel Market Outlook
6.5.3.1.2 Graphite Electrodes in the Steel Recycling Process
6.5.3.1.2.1 Application Requirements
6.5.3.1.2.2 Wear Mechanisms
6.5.3.1.2.3 Future Developments
6.5.3.1.2.4 Graphite Electrode Market Outlook
References
6.5.4 Linings and Casting*
References
Further Reading
Notes
6.5.5 Carbon Electrodes*
6.5.5.1 Introduction
6.5.5.1.1 Raw Materials
6.5.5.1.2 Manufacturing
6.5.5.1.3 Typical Properties
6.5.5.1.4 Dimensions
6.5.5.1.5 Joint Systems
6.5.5.1.6 Carbon Electrode Market
Reference
Note
6.5.6 Self-Baking Electrodes
6.5.6.1 Raw Materials
6.5.6.2 Manufacturing
6.5.6.3 Properties
6.5.6.4 Operation Mode
6.5.6.4.1 The Process of Self-Baking Electrodes
References
6.5.7 Graphite Process Equipment
6.5.7.1 Heat Exchangers
6.5.7.2 Absorbers, Desorbers, and Distillation Columns
6.5.7.3 Hydrochloric Acid and Gas Synthesis Units
6.5.7.4 Reactors
6.5.7.5 Pumps
6.5.8 Fine-Grained Graphite
6.5.8.1 Markets and Applications
6.5.8.2 Applications in the Electronic Industry
6.5.8.3 Applications in the Metallurgy
6.5.8.4 Applications in the Ceramics
6.5.8.5 Applications in the Glass and Quartz-Glass Production
6.5.8.6 Applications for Current Transmission. 6.5.8.6.1 Carbon Brushes
6.5.8.6.2 Current Collectors
6.5.8.7 Applications in the Analytical Technology
6.5.9 Synthetic Graphite in Nuclear Applications
6.5.9.1 Early Graphites in Nuclear Reactor Technology
6.5.9.2 Requirements for Nuclear Graphite
6.5.9.3 Radiation Damage in Nuclear Graphite. 6.5.9.3.1 Structure of Polycrystalline Graphite
6.5.9.3.2 Basic Effects of Radiation on the Graphite Lattice Structure
6.5.9.3.3 Graphite Property Changes Due to Fast Neutron Irradiation
6.5.9.3.3.1 Dimensional Changes
6.5.9.3.3.2 Thermal Expansion Coefficient (CTE)
6.5.9.3.3.3 Thermal Conductivity and Resistivity
6.5.9.3.3.4 Young’s Modulus
6.5.9.3.3.5 Tensile Strength
6.5.9.3.3.6 Irradiation-Induced Creep
6.5.9.4 Decommissioning
6.5.9.5 Outlook
References
6.5.10 Expanded Graphite and Graphite Foils*
6.5.10.1 Production
6.5.10.2 Properties
6.5.10.3 Applications. 6.5.10.3.1 Sealing Applications
6.5.10.3.2 Conductive Fillers
6.5.10.3.3 Latent Heat Storage
6.5.10.3.4 Other Applications
6.5.10.4 Economic Aspects
References
Further Reading
Note
6.5.11 Other Classes of Carbon*
6.5.11.1 Glass-Like Carbon
6.5.11.2 Pyrocarbon and Pyrographite
6.5.11.3 Graphite Compounds. 6.5.11.3.1 Surface Complexes
6.5.11.3.2 Graphite Intercalation Compounds
References
Further Reading
Notes
7 Carbon and Graphite for Electrochemical Power Sources*
7.1 Introduction
7.2 Primary Batteries
7.3 Lead Acid Batteries
7.4 Li-Ion Batteries. 7.4.1 Introduction
7.4.2 Active Materials: General Concepts
7.4.2.1 Types of Carbon and Graphite Materials
7.4.2.2 Mechanism of Charge Storage in Graphitic Materials
7.4.2.3 Graphitization Degree and Reversible Capacity
7.4.2.4 The Solid Electrolyte Interphase
7.4.2.5 Solvent Co-intercalation and Graphite Exfoliation
7.4.2.6 Further Material Design Aspects
7.4.2.7 Mechanism of Charge Storage in Amorphous Carbons
7.4.3 Commercialized Active Materials
7.4.3.1 Amorphous Carbons (Hard and Soft Carbons)
7.4.3.2 Graphitized Mesophase Carbon Materials
7.4.3.3 Natural Graphite
7.4.3.4 Synthetic Graphite
7.4.3.5 Carbon/Graphite-Silicon and Composites
7.4.3.6 Other Anode Materials
7.4.4 Conductive Additives
7.4.5 Carbon Coatings
7.5 “Beyond Li-Ion” Battery Chemistries
7.5.1 Na-Ion Battery
7.5.2 Li-Sulfur Battery
7.5.3 Li-Oxygen/Air Battery
7.6 Electrochemical Double-Layer Capacitors. 7.6.1 Introduction
7.6.2 Effect of Porosity on Capacitance
7.6.3 Carbon-Based Electrode Materials
7.6.3.1 Activated Carbons
7.6.3.2 Other Carbon Materials
7.7 Redox Flow Batteries. 7.7.1 Introduction
7.7.2 Bipolar Plates
7.7.3 Electrode Materials. 7.7.3.1 Carbon Felts
7.7.3.2 Reticulated Vitreous Carbon
7.7.3.3 Other Electrode Concepts
7.7.3.4 Relevance of Carbon Materials
7.8 Fuel Cells. 7.8.1 Introduction
7.8.2 Bipolar Plates
7.8.2.1 Manufacturing
7.8.2.2 Properties
7.8.3 Gas Diffusion Layers and Electrodes
7.8.3.1 Gas Diffusion Layer Substrates
7.8.3.2 Microporous Layers
7.8.3.3 Gas Diffusion Electrodes and Catalyst Layers
References
Further Reading
Note
8 Carbon and Graphite for Catalysis
8.1 Physical and Chemical Properties of Carbon and Graphite
8.1.1 Surface Area
8.1.2 π Electron System
8.1.3 Defect
8.1.4 Surface Oxygenated Groups
8.1.5 Heteroatoms
8.2 Carbon as Catalyst Support
8.2.1 Preparation Methods
8.2.1.1 Impregnation
8.2.1.2 Adsorption
8.2.1.3 Deposition Precipitation
8.2.1.4 Colloidal
8.2.2 Catalytic Reaction
8.2.2.1 Surface Functional Groups and Pore Structure
8.2.2.2 Unique π Electron System
8.2.2.3 High Acid/Base and Hydrothermal Stability
8.3 Carbon as Active Phase. 8.3.1 Typical Carbon-Catalyzed Reaction Systems
8.3.2 Dehydrogenation Reactions on Nanocarbon. 8.3.2.1 Direct Dehydrogenation
8.3.2.2 Oxidative Dehydrogenation
8.3.2.3 Active Sites for ODH Reactions
8.3.2.4 Reaction Mechanism for ODH Reactions
8.3.2.5 Selectivity in Carbon-Catalyzed ODH Reactions
8.3.3 Selective Oxidation Reactions on Nanocarbon
8.3.4 Hydrohalogenation Reactions on Nanocarbon
8.3.5 Liquid-Phase Catalytic Reactions on Nanocarbon
8.3.6 Summary and Outlook
References
9 Activated Carbon*
9.1 General Aspects. 9.1.1 Definition
9.1.2 History
9.2 Carbonaceous Adsorbents. 9.2.1 Types of Carbonaceous Adsorbents
9.2.1.1 Activated Carbon
9.2.1.2 Activated Coke
9.2.1.3 Carbon Molecular Sieves
9.2.2 Chemical Properties
9.2.3 Mechanical Properties
9.2.4 Adsorption Properties
9.2.5 Quality Control
9.2.5.1 Physical and Mechanical Tests
9.2.5.2 Chemical and Physicochemical Tests
9.2.5.3 Adsorption Measurements
9.3 Production. 9.3.1 General Aspects
9.3.2 Raw Materials
9.3.3 Activating Furnaces. 9.3.3.1 Shaft Furnaces
9.3.3.2 Rotary Kilns
9.3.3.3 Multiple-Hearth Furnaces
9.3.3.4 Fluidized-Bed Furnaces
9.3.4 Methods of Activation. 9.3.4.1 Chemical Activation
9.3.4.2 Gas Activation
9.3.5 Granular and Pelletized Carbons
9.3.6 Carbon Molecular Sieves
9.3.7 Further Treatment
9.3.8 Impregnation
9.4 Applications
9.4.1 Gas-Phase Applications
9.4.1.1 Solvent Recovery
9.4.1.2 Process Gas and Air Purification
9.4.1.3 Gas Separation
9.4.1.4 Gasoline Vapor Adsorption
9.4.1.5 Flue Gas Cleaning
9.4.2 Liquid-Phase Applications
9.4.2.1 Water Treatment
9.4.2.2 Miscellaneous Liquid-Phase Applications
9.4.3 Impregnated Activated Carbon
9.4.4 Catalysts and Catalyst Supports
9.5 Regeneration and Reactivation
9.6 Economic Aspects
References
Further Reading
Note
10 Carbon Black
10.1 Carbon Black in General
10.2 Physical Properties. 10.2.1 Morphology
10.2.1.1 Morphology of Primary Particles and Aggregates
10.2.1.2 Microstructure of Carbon Black
10.2.1.3 Microstructure of Inversion Blacks
10.2.1.4 Size and Size Distribution of Primary Particles
10.2.1.5 Specific Surface Area
10.2.1.6 Non-spheroidal Primary Particles
10.2.1.7 Carbon Black Aggregates
10.2.2 Adsorption Properties
10.2.3 Density
10.2.4 Electrical Conductivity
10.2.5 Light Absorption
10.2.5.1 Blackness Value MY and MC
10.3 Chemical Properties. 10.3.1 Chemical Composition and Surface Chemistry
10.3.2 Oxidation Behavior
10.3.3 Inorganic Trace Compounds
10.4 Raw Materials
10.5 Production Processes
10.5.1 Furnace Black Process
10.5.2 Gas Black Process
10.5.3 Lampblack Process
10.5.4 Thermal Black Process
10.5.5 Acetylene Black Process
10.5.6 Other Manufacturing Processes
10.6 Oxidative Aftertreatment of Carbon Black
10.7 Environmental Aspects
10.8 Testing and Analysis
10.8.1 Electron Microscopy
10.8.1.1 Determination of the Particle Size
10.8.1.2 Determination of the Electron Microscopic Surface Area
10.8.2 Sorption Analysis. 10.8.2.1 Specific Surface Area Determined by Adsorption Methods
10.8.2.2 Nitrogen Surface Area (BET Surface Area and STSA)
10.8.2.3 Iodine Adsorption Number
10.8.2.4 CTAB Surface Area
10.8.3 Determination of Carbon Black Aggregates
10.8.3.1 Aggregate Size Determination by the DCP Method
10.8.3.2 Aggregate Size Determination by the PCS Method
10.8.3.3 Dibutyl Phthalate Absorption and Oil Absorption Number
10.8.3.4 Void Volume
10.8.4 Special Analytical Test Methods
10.8.5 Application Tests
10.9 Storage and Transportation
10.10 Uses. 10.10.1 Fields of Application/Consumption
10.10.1.1 Rubber Reinforcement
10.10.1.2 Non-rubber Applications
10.11 Economic Aspects
10.12 Toxicology and Occupational Health. 10.12.1 Carbon Black vs. Soot
10.12.2 Toxicology and Epidemiology
10.12.3 Occupation Exposure Limits
10.12.4 Food Contact Regulations
Acknowledgment
References
Further Reading
11 Carbon Fibers
11.1 Introduction
11.1.1 History
11.1.2 Fundamentals
11.1.3 Nomenclature
11.2 Raw Materials (Precursor Fibers)
11.3 Production. 11.3.1 Carbon Fiber Production Process (Rayon Based)
11.3.2 Carbon Fiber Production Process (Pitch Based)
11.3.3 Carbon Fiber Production Process (PAN Based)
11.3.3.1 Polyacrylonitrile Polymer and Fiber
11.3.3.2 Stabilization of PAN Fiber
11.3.3.3 Carbonization of Stabilized PAN Fibers
11.3.3.4 Graphitization of PAN-Based Carbon Fibers
11.3.4 Chemical Composition
11.4 Properties
11.4.1 Mechanical Properties
11.4.2 Structure
11.4.3 Physical and Chemical Properties
11.5 Uses
11.5.1 Stabilized PAN Fiber for Textile Applications
11.5.2 Carbonized Fibers for Electrical Conductivity and Reinforcement Applications
11.5.2.1 Automotive Industry
11.5.2.2 Wind Energy
11.5.2.3 Aerospace
11.5.2.4 Sports Industry
11.5.2.5 Mechanical Engineering
11.5.2.6 Civil Engineering
11.6 Economic Aspects
11.6.1 Recycling (Secondary Carbon Fibers)
11.6.2 Life Cycle Assessment
References
12.1 Carbon Fiber Reinforced Polymers*
12.1.1 Raw Materials. 12.1.1.1 Carbon Fibers
12.1.1.2 Matrix Resins
12.1.2 Manufacturing Technologies. 12.1.2.1 Thermoset Matrix Systems
12.1.2.2 Thermoplastic Matrix Systems
12.1.3 Design and Simulation
12.1.4 Mechanical Properties
12.1.5 Applications. 12.1.5.1 Aerospace Applications
12.1.5.2 Automotive Applications
12.1.5.3 Wind-Energy Facilities
12.1.5.4 Offshore Applications
12.1.5.5 Sporting Goods
12.1.5.6 Boat and Ship Building
12.1.5.7 Industrial Applications
12.1.5.8 Medical Applications
12.1.5.9 Building Applications
12.1.6 Economic Aspects
References
Note
12.2 Carbon Fiber Reinforced Carbon*
12.2.1 Introduction
12.2.1.1 History
12.2.1.2 Definition and Nomenclature
12.2.2 Raw Materials
12.2.2.1 Carbon Fibers and Textile Fiber Precursors
12.2.2.1.1 PAN Fibers
12.2.2.1.2 Rayon Fibers
12.2.2.1.3 Pitch Fibers
12.2.2.2 Matrix Resins
12.2.2.3 Additives
12.2.2.4 Pitch
12.2.2.5 Pyrocarbon
12.2.3 Manufacturing Processes
12.2.3.1 Pressing and Manual Layup
12.2.3.2 Winding
12.2.3.3 Autoclave Technology
12.2.3.4 Joining
12.2.3.5 Densification
12.2.3.5.1 Liquid Impregnation
12.2.3.5.2 Gas-Phase Deposition (CVI, CVD)
12.2.3.6 Graphitization
12.2.4 Structure and Properties
12.2.4.1 Fiber–Matrix Bonding, Structure, and Crack Structure
12.2.4.2 Material Properties
12.2.4.2.1 Mechanical Properties
12.2.4.2.2 Thermophysical Properties
12.2.4.2.3 Tribological Properties
12.2.4.3 Chemical Properties
12.2.4.3.1 Chemical Corrosion
12.2.4.3.2 Oxidation and Oxidation Protection
12.2.5 Component Design and Numerical Methods
12.2.5.1 Problems Specific to CFRC
12.2.5.2 Characteristic Material Parameters
12.2.5.3 Design Procedure
12.2.5.4 Experimental Studies and Component Tests
12.2.6 Applications
12.2.7 Outlook
References
Note
12.3 Carbon Fiber Reinforced Ceramic Composites
12.3.1 Introduction
12.3.2 Manufacturing Methods
12.3.2.1 Chemical Vapor Infiltration (CVI)
12.3.2.2 Polymer Infiltration and Pyrolysis (PIP)
12.3.2.3 Melt Infiltration (MI)
12.3.2.4 Manufacture of CFRP Preforms
12.3.2.5 Pyrolysis of CFRP Preforms
12.3.2.6 Siliconization
12.3.2.7 Serial Manufacture of MI-Based C/SiC Brake Disks for Automobiles
12.3.3 Properties. 12.3.3.1 General Properties
12.3.3.2 Material Composition and Microstructure
12.3.3.3 Mechanical Properties
12.3.3.4 Thermal Properties
12.3.3.5 Oxidation and Corrosion
12.3.3.6 Tribological Properties
12.3.4 Applications
12.3.4.1 Space Applications
12.3.4.2 Thermal Protection Systems (TPS)
12.3.4.3 Space Propulsion
12.3.4.4 Satellite Structures
12.3.4.5 Applications for Aeronautics
12.3.4.6 Applications for Friction Systems
Acknowledgments
Abbreviations
References
13 Nanocarbons
13.1 Introduction
13.2 Definition of Nanocarbons
13.2.1 The Two-Dimensional Allotrope of Carbon: Graphene
13.2.2 Physical Properties of Graphene
13.2.3 The Preparation of Graphene
13.2.4 Applications of Graphene
13.2.5 Transparent Conducting Films Using Graphene
13.2.6 Graphene as Composite Filler
13.2.7 Using Graphene as a Substrate
13.3 One-Dimensional Fibrous Nanocarbons
13.3.1 Carbon Nanotubes
13.3.2 Carbon Nanotube Structure and Electronic Properties
13.3.3 The Preparation of Carbon Nanotubes
13.3.4 Physical Properties and Applications of Single- and Double-Walled Carbon Nanotubes
13.3.4.1 Bulk Conductivity of SWNTs and DWNTs
13.3.4.2 SWNT and DWNT as Porous Material
13.3.4.3 SWNTs and DWNTs as Nano-templates
13.3.4.4 DWNTs as Superconducting Nanowires
13.3.4.5 Structural Engineering of CNT
13.3.4.6 Highly Functional Composite Materials Using DWNTs
13.3.5 Multi-walled Carbon Nanotubes
13.3.5.1 MWNTs as the Universal Composite Filler
13.3.5.2 Functionalization with Coatings Using Solubilized MWNTs
13.3.5.3 MWNT Composite Paint for Corrosion Protection
13.3.5.4 MWNT Composite for Sports Products
13.3.5.5 MWNT as an Additive in Lithium-Ion Rechargeable Batteries
13.3.5.6 MWNT as a Hybrid Absorbent
13.4 Other Types of Carbon Nanotubes
13.4.1 Structure, Physical Properties, and Applications for Cup-Stacked Carbon Nanotube
13.4.1.1 Supporting Metal Particle at the CSCNT Edges
13.4.1.2 Electrochemical Reaction Derived from the CSCNT Edge
13.4.1.3 The Peculiar Electrical Conductivity at the CSCNT Edge
13.5 Carbyne
13.6 Graphene Nanoribbons
13.7 The Preparation of Graphene Nanoribbons
13.7.1 Applications of Graphene Nanoribbons
13.8 Zero-Dimensional Nanocarbons: Fullerenes
13.9 Safety and Toxicity of Carbon Nanotubes: “Design of Safe Nanomaterials”
13.10 Conclusions and Future Challenges
References
Index
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Raw Materials, Production and Applications
Edited by
.....
See: CARBON, GRAPHITE.
There is also the hexagonal diamond‐like structure of the element CARBON (Lonsdaleite).
.....