Selenium Contamination in Water
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Selenium Contamination in Water
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Selenium Contamination in Water
List of Contributors
1 Mapping of Selenium Toxicity and TechnologicalAdvances for its Removal: A Scentiometric Approach
1.1 Introduction
1.1.1 Contamination Status of Selenium
1.1.2 Mapping Selenium Research Dynamics Advances
1.1.3 Bibliometric Analysis
1.2 Selenium Reduction Technologies Used in India
1.3 Selenium Reduction Technologies Used in China
1.4 Selenium Research Dynamics Using AI Techniques
1.5 Conclusion
Acknowledgment
Conflict of Interest
References
2 Selenium Distribution and Chemistry in Water and Soil
2.1 Introduction
2.2 Environmental Distribution and Forms
2.3 Species of Selenium
2.4 Interaction of Selenium with Organic Matters and Microorganisms
2.5 Interaction of Selenium with Clay Mineral
2.6 Conclusion
References
3 Occurrence and Sources of Selenium Contaminationin Soil and Water and its Impacts on Environment
3.1 Introduction
3.1.1 Chemistry of Se
3.1.2 Forms of Se
3.1.3 Chemical and Physical Properties
3.2 Sources and Occurrence of Se in the Environment
3.2.1 Natural Sources
3.2.2 Anthropogenic Sources of Contamination in Environment
3.3 Drinking Water Standards and Criteria
3.4 Effect of Se in Human, Terrestrial, and Aquatic Life
3.4.1 Human Population
3.4.2 Aquatic and Terrestrial Life
3.4.3 Biological Role
3.5 Industrial Applications
3.6 Conclusions
References
4 Selenium Toxicity in Domestic Animals: Sources, Toxicopathology, and Control Measure
4.1 Introduction
4.2 Sources of Selenium to Domestic Animals
4.2.1 Soil
4.2.2 Water
4.2.3 Forage
4.2.4 Feed Supplements
4.2.5 Diagnosis of Se in Soil, Forages, and in Livestock Animals
4.3 Toxicopathology of Selenium in Different Domestic Animals
i Acute intoxication:
ii Chronic intoxication:
4.3.1 Cattle
4.3.2 Sheep
4.3.3 Pigs
4.3.4 Poultry
4.3.5 Camel and Horse
4.3.6 Antelope
4.4 Control Measures of Selenium Toxicity
4.5 Conclusion
References
5 Positive and Negative Impacts of Seleniumon Human Health and Phytotoxicity
5.1 Introduction
5.2 Exposure of Selenium in the Environment
5.2.1 Water
5.2.2 Soil
5.2.3 Air
5.2.4 Direct Exposure of Selenium to Humans by Feed
5.3 Effect of Selenium on Human Health
5.3.1 Toxicity of Selenium
5.4 Selenium Phytotoxicity. 5.4.1 Se Uptake and Accumulation
5.4.2 Effect of Se on Plants
5.5 Conclusion
References
6 Various Analytical Techniques for Se Determination in Different Matrices
6.1 Introduction
6.1.1 Health Hazards: Impact of Se on Human Health
6.1.2 Industrial Techniques Used for Selenium Removal
6.1.3 Se Monitoring Recommendations
6.1.4 Development and Challenges during Se Treatment Practices
6.2 Spectroscopic Techniques. 6.2.1 Atomic Absorption Spectrometry (AAS)
6.2.2 Flame Atomic Absorption Spectrometer (FAAS)
6.2.3 Inductively Coupled Plasma‐Atomic Emission Spectrometry (ICP‐AES)
6.2.4 Inductively Coupled Plasma Mass Spectrometry (ICP‐MS)
6.2.5 Inductively Coupled Plasma‐Optical Emission Spectrometry (ICP‐OES)
6.3 Chromatographic Methods
6.4 Electroanalytical Methods
6.4.1 Other Analytical Methods
6.4.2 Atomic Fluorescence and Emission Spectroscopy (AFS and AES)
6.5 Electrochemical Methods
6.6 Other Analytical Methods
6.7 X‐Ray Techniques
6.7.1 Activation Investigation
6.8 Conclusions
References
7 Voltammetric Sensors and Materials for Selenium Detection in Water
7.1 Introduction
7.2 Voltammetric Method: Basic Principles and Mechanism
7.3 Type of Voltammetric Methods for Selenium Detection in Water
7.3.1 Stripping Voltammetry
7.3.1.1 Anodic Stripping Voltammetry
7.3.1.2 Cathodic Stripping Voltammetry (CSV)
7.3.2 Square Wave Voltammetry
7.3.3 Linear Sweep Voltammetry
7.3.4 Cyclic Voltammetry
7.3.5 Differential Pulse Voltammetry (DPV) Methods
7.4 Electrodes and Electrode Materials/Modifiers for Voltammetric Detection of Selenium in Water: Designing and Sensing Performance. 7.4.1 Electrodes
7.4.2 Electrode Materials
7.5 Realization of Voltammetric Sensors for Selenium Detection in Water: Concluding Remarks and Future Scope
References
8 Optical Sensors and Materials for Selenium Determination in Water
8.1 Introduction
8.2 Health Effects and Sources of Selenium Toxicity
8.3 Sensing Principles and Design of Optical Sensory Probes
8.4 Advances in Optical Sensory Probes: A Meta‐Analysis on Optical Materials
8.4.1 Absorbance‐Based Platforms
8.4.2 Photoluminescence‐Based Platforms
8.5 Commercial Optical Sensors for Selenium Analysis
8.6 Summary and Future Outlook
References
9 Biosensors for the Detection of Selenium in Environment
9.1 Introduction
9.2 Biosensors and Their Types
9.2.1 Working
9.2.2 Types of Biosensors
9.3 Biosensors for Selenium Detection. 9.3.1 Enzyme‐Based Biosensors
9.3.2 Whole Cell‐based Biosensors
9.3.3 DNA‐based Biosensors
9.4 Conclusion
References
10 Physical and Chemical Methods for Selenium Removal
10.1 Introduction. 10.1.1 Selenium and Origin of Contamination
10.1.2 Why Se Removal is Essential
10.2 Methods Available for Se Removal
10.3 Physical Methods for Se Removal
10.3.1 Reverse Osmosis
10.3.2 Nanofiltration
10.4 Chemical Methods for Se Removal
10.4.1 Precipitation
10.4.2 Adsorption
10.4.3 Ion Exchange
10.4.4 Photocatalytic Reduction
10.4.5 Zero‐Valent Ion Reduction
10.4.6 Electrochemical Methods
10.5 Combination of Physical and Chemical Methods
10.6 Conclusion
Acknowledgments
References
11 Chemical Methods for Removal and Treatment of Selenium from Water
11.1 Introduction
11.2 Selenium Removal Methods
11.3 Chemical Treatment
11.4 Adsorption. 11.4.1 Magnetic Graphene Oxide Nanocomposite
11.4.2 Dendrimer Functionalized Graphene Oxide
11.4.3 Poly (allylamine) (PAA) –Graphene Oxide
11.4.4 Hematite‐Coated Magnetic Nanoparticles (MNPs)
11.4.5 Organic Ligands
11.4.6 Se Adsorption Using Metal Oxides/Hydroxides
11.4.7 FeOOH
11.4.8 Natural Goethite
11.4.9 Biosorption
11.4.10 Chitosan‐Nanocomposite Hollow Fibers
11.4.11 Modified Cellulose Aerogels
11.4.12 Ion‐Imprinted Polymeric Adsorbents
11.5 Combination of Adsorption and Ion Exchange. 11.5.1 Iron Oxide‐anion Exchange Resin
11.5.2 Ferrous‐Manganese Hydrous Oxide
11.6 Combination of Adsorption and Reduction. 11.6.1 Zero‐Valent Iron
11.6.2 Biosynthesized Nanoscale Zero‐Valent Iron
11.7 Precipitation and Reduction
11.8 Bioreactor (Reduction)
11.9 Conclusions
Acknowledgment
References
12 Biological Treatment Advancements for the Remediation of Selenium from Wastewater
12.1 Introduction
12.2 Bacteria‐Mediated Selenium Removal
12.2.1 Mechanism
12.2.2 Treatment Technologies
12.2.2.1 Biofilm Bioreactor
12.2.2.1.1 ABMet
12.2.2.1.2 FBR (Fluidized Bed Reactor) System
12.2.2.1.3 MBfR (Membrane Biofilm Reactor) System
12.2.2.1.4 BSeR System
12.2.2.2 Sludge‐Based Bioreactors
12.2.2.2.1 UASB Reactor
12.2.2.2.2 SBR Reactor
12.2.2.3 Selenium Volatilization
12.3 Algae‐Mediated Se Removal
12.3.1 Mechanism
12.3.2 Treatment Technologies. 12.3.2.1 Constructed Wetland
12.3.2.2 Algal‐Bacterial Selenium Removal (ABSR) System
12.3.2.3 Biosorption
12.4 Phytoremediation
12.4.1 Phytoremediation Processes
12.4.1.1 Phytoextraction
12.4.1.2 Phytovolatilization
12.5 Remediation of Selenium by Fungi
12.6 Conclusion
Acknowledgment
References
13 Nanomaterials for the Remediation of Selenium in Water
13.1 Introduction
13.2 Various Selenium Remediation Techniques
13.2.1 Chemical Precipitation
13.2.2 Phytoremediation
13.2.3 Bioremediation
13.2.4 Coagulation‐Flocculation
13.2.5 Electrocoagulation (EC)
13.2.6 Co‐Precipitation Method
13.3 Selenium Removal Using Adsorption
13.4 Nano Materials for Remediation of Selenium in Water
13.4.1 Single Metallic Nanoparticles as Adsorbents
13.4.2 Mixed Metal‐Based Nanoparticles
13.4.3 Magnetic Nanoparticles
13.4.4 Nanocomposites
13.4.4.1 Nanocomposites Using Inorganic Frameworks
13.4.4.2 Nanocomposites Using Porous Polymeric Matrix
13.4.4.3 Carbon/Graphene‐Based Nanocomposites
13.4.5 Photocatalytic Nanoparticles/Nanocomposites (Titanium‐Based Nanoparticles)
13.5 Conclusions and Future Trends
References
14 Harnessing Biogeochemical Principals for Remediation of Selenium‐Contaminated Soils
14.1 Introduction
14.2 Selenium as a Nutrient for Humans and Animals
14.3 Selenium Toxicity to Humans
14.4 Selenium Toxicity in Plants
14.5 Selenium Toxicity in Animals
14.6 Sources of Selenium: Natural and Anthropogenic
14.7 Concentrations of Selenium in Terrestrial, Aquatic, and Atmospheric Environments
14.8 Selenium Chemistry and Movement in the Environment
14.9 Conventional Remediation Techniques
14.10 Nanomaterial‐Based and Innovative Remediation Techniques
14.11 Conclusions
References
15 Membrane Separation Technologies for Selenium
15.1 Introduction
15.2 Se Resources
15.2.1 Soil
15.2.2 Waters
15.2.3 Plants
15.2.4 Air
15.2.5 Food
15.3 Health Hazards
15.4 Membrane Applications
15.4.1 Hybrid System
15.4.2 Adsorbent Membrane
15.4.3 Ultrafiltration and Nanofiltration
15.4.4 Novel Thin‐film Composite Membranes. 15.4.4.1 What Is TFC?
15.4.4.2 Thin‐Film Nanocomposite Membranes
15.4.4.3 TFC & Zwitterionic Polymer
15.4.5 Functionalized Nanowire Membrane
15.5 Commercial Aspect
15.6 Conclusion
References
16 Intensifying Approaches for Removal of Selenium
16.1 Introduction
16.2 Selenium
16.3 Selenium and Wastewater
16.4 Process Intensification
16.5 Process Intensification in Wastewater Treatment
16.6 Conventional and Intensified Ways for Selenium Removal
16.6.1 Biological Treatment
16.6.1.1 Microbial Reduction
16.6.1.2 Microbial Volatilization
16.6.1.3 Enzymatic Reduction
16.6.1.4 Enhanced In‐Situ Microbial Reduction
16.6.1.5 Algal Treatment
16.6.1.6 Microbial Fuel Cell
16.6.1.7 Packed Bioreactor
16.6.1.8 Fluidized Bed Reactor
16.6.1.9 Hydrogen‐Based Membrane Biofilm Reactor
16.6.1.10 Moving Bed Biofilm Reactor
16.6.1.11 Biochemical Reactor
16.6.2 Constructed Wetlands
16.6.3 Phytoremediation
16.6.4 Adsorption
16.6.4.1 Metal Oxides
16.6.4.2 Activated Adsorbents
16.6.4.3 Low‐Cost Adsorbent
16.6.4.4 Soil as Adsorbent
16.6.4.5 Layered Double Hydroxides
16.6.4.6 Ferrihydrite Adsorbent
16.6.4.7 Maghemite Adsorbent
16.6.4.8 Conjugate Adsorbent
16.6.4.9 Graphene Oxides
16.6.4.10 Ion Exchange
16.6.4.11 In‐Situ Solidification and Chemisorption
16.6.4.12 Nanoadsorbents
16.6.4.12.1 Metal Oxide/Hydroxide Nanomaterial
16.6.4.12.2 Ligand Immobilized Nanocomposites
16.6.4.12.3 Nanoparticle Graphene Oxide
16.6.4.12.4 Nanocomposites Layered Double Hydroxide
16.6.4.12.5 Polymer‐Clay Nanocomposites
16.6.5 Membrane Technologies
16.6.5.1 Reverse Osmosis
16.6.5.2 Emulsion Liquid Membranes
16.6.5.3 Nanofiltration
16.6.5.4 Ceramic Microfiltration
16.6.6 Oxidation/Reduction
16.6.6.1 Zero‐Valent Iron (ZVI)
16.6.6.2 Catalyzed ZVI
16.6.6.3 Advanced Reduction Process
16.6.6.4 Nanoscale Zero‐Valent Iron (nZVI)
16.6.7 Evaporation
16.6.7.1 Evaporation Ponds
16.6.7.2 Enhanced Evaporation Systems
16.6.7.3 Salinity Gradient Solar Pond
16.6.7.4 Mechanical Evaporator/Crystallizer
16.6.8 Coagulation
16.6.9 Electrocoagulation
16.6.10 Photoreduction
16.6.11 Precipitation
16.6.12 Permeable Reactive Barriers
16.7 Discussion
References
17 The Emerging Threat of Selenium Pollution: A Spatial Analysis of Its Sources and Vulnerable Areas in India
17.1 Introduction
17.2 Understanding of Selenium. 17.2.1 Selenium Chemistry
17.2.2 Uses of Selenium
17.3 Toxicity of Selenium. 17.3.1 Selenium as a Toxic Substance
17.3.2 Mechanism of Selenium Toxicity
17.4 Selenium Pollution. 17.4.1 State of Art of Selenium Pollution
17.4.2 Mechanism of Selenium Pollution
17.4.3 Pollution at Global Level
17.4.4 Selenium Pollution of Aquifers in India
17.5 Identification of Vulnerable Areas
17.5.1 Least Vulnerable Areas
17.5.2 Moderately Vulnerable Areas
17.5.3 Highly Vulnerable Areas
References
Index. a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
y
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Edited by
.....
Ipsita Nandi Institute of Environmental Science Banaras Hindu University Varanasi Uttar Pradesh India
Sakshi Narula CSIR – National Institute of Science Technology and Development studies (CSIR-NISTADS) New Delhi India
.....