Processing of Ceramics

Processing of Ceramics
Автор книги: id книги: 2069199     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19801,9 руб.     (197,59$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119538813 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

PROCESSING OF CERAMICS A firsthand account of the “transparent ceramics revolution” from one of the pioneers in the field Processing of Ceramics: Breakthroughs in Optical Materials is an in-depth survey of the breakthrough research and development of transparent ceramics, covering historical background, theory, manufacturing processes, and applications. Written by an internationally-recognized leader in the technology, this authoritative volume describes advances in optical grade ceramics over the past three decades—from the author’s first demonstration of laser ceramics in Japan in 1991 to new applications of transparent ceramics such as ceramic jewels, wireless heating elements, and mobile device displays.The author provides numerous development examples of laser ceramics, crystal and ceramic scintillators, magneto-optic transparent ceramics, optical ceramic phosphors for solid state lighting, and more. Detailed chapters cover topics such as the technical problems of conventional translucent and transparent ceramics, the characteristics of scintillation materials, single crystal and ceramic scintillator fabrication and optimization, and solid-state crystal growth (SSCG) methods for single crystal ceramics. Processing of Ceramics: Outlines the author’s 30 years of work in the area of transparent ceramicsProvides a detailed history of the world's first ceramic laser developmentDemonstrates how laser oscillation using ceramic materials match or surpass high-quality single crystalsDescribes how innovative polycrystalline ceramics have transformed optical material developmentIncludes extensive references, chapter introductions and summaries, and numerous graphs, tables, diagrams, and color images Processing of Ceramics is an invaluable resource for researchers, materials scientists, engineers, and other professionals across academic and industrial fields involved in the development and application of optical grade ceramics.

Оглавление

Группа авторов. Processing of Ceramics

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Processing of Ceramics. Breakthroughs in Optical Materials

List of Contributors

Preface

1 Introduction

1.1 Introduction

1.2 Technical Problem of Conventional Single Crystal

1.3 Problem of Conventional Translucent and Transparent Ceramics

1.4 Objective of Optical Grade Ceramics

1.5 Conclusions

References

2 Ceramic Laser/Solid‐State Laser

2.1 Background

2.2 Principle of Laser Generation. 2.2.1 Spontaneous Emission

2.2.2 Stimulated Emission and Laser Generation

2.3 Laser Ceramics. 2.3.1 Synthesis of Garnet‐Based Materials

2.3.2 Laser Oscillation by Monolithic Garnet Ceramics

2.3.3 Synthesis and Laser Performance of Sesquioxide Ceramics

2.3.4 Other Materials (CaF2, Pseudo Perovskite, ZnSe, ZnS, etc.)

2.3.5 Fiber Ceramics as Laser Gain Media

2.3.6 Optically Anisotropic Ceramics

2.3.7 Laser Oscillation by Composite Laser Elements

References

3 Scintillators

3.1 Background

3.1.1 Historical Development of Scintillators

3.1.2 Application of Scintillators

3.2 Physics of Scintillation

3.2.1 Characteristics of Scintillation Materials

3.3 Inorganic Single Crystal Scintillation Materials. 3.3.1 Halide Scintillators

3.3.2 Oxide Scintillators

3.4 Fabrication of Advanced Single Crystal and Ceramics Scintillators

3.4.1 Rare‐Earth Oxyorthosilicate Scintillators

3.4.2 Garnet Scintillators

3.4.3 GOS Ceramic Scintillators

3.4.4 (Y,Lu,Gd)2O3:Eu Ceramic Scintillators

3.5 Optimization of Single Crystal and Ceramic Scintillators. 3.5.1 Rare‐Earth Oxyorthosilicate Scintillators

3.5.2 Garnet Scintillators

3.5.3 GOS Ceramic Scintillators

3.5.4 (Y,Lu,Gd)2O3:Eu Ceramic Scintillators

3.6 Residual Problems and Future Trends

Acknowledgments

References

4 Magneto‐Optic Transparent Ceramics

4.1 Introduction

4.2 Theory of Magneto‐Optic Effect

4.2.1 Magneto‐Optic Effect in Paramagnetic Transparent Ceramics

4.2.2 Magneto‐Optic Effect in Ferromagnetic Material

4.2.3 Measurement of Verdet Constant, Insertion Loss, and Extinction Ratio

4.3 Important Parameter for Application

4.3.1 Thermal Lens Effect in Faraday Rotator

4.3.2 High Power Laser Irradiation

4.4 Paramagnetic Magneto‐Optic Ceramic Materials. 4.4.1 TGG Ceramics

4.4.2 TAG (Terbium Aluminum Garnet) Ceramics

4.4.3 Sesqui‐Oxide Ceramics

4.4.4 Pyrochlore Ceramics

4.5 Ferrimagnetic Magneto‐Optic Ceramics

4.5.1 Yttrium Iron Garnet

4.5.2 Bismuth Doped Yttrium Iron Garnet Ceramics

4.5.3 Cerium Doped Yttrium Iron Garnet Ceramics

4.6 Summary

References

5 Solid‐State Lighting

5.1 Introduction

5.2 Light Emitting Diodes (LEDs)

5.2.1 Brief History

5.2.2 Principle and Structure

5.2.3 Generation of White Light from LEDs

5.3 Fundamentals of Phosphor‐Converted White LEDs

5.3.1 Basic Principles of Luminescence. 5.3.1.1 Photoluminescence

5.3.1.2 Thermal Quenching

5.3.1.3 Quantum Efficiency

5.3.2 Key Parameters of White LEDs. 5.3.2.1 Luminous Efficacy

5.3.2.2 CIE Chromaticity Coordinates

5.3.2.3 Correlated Color Temperature

5.3.2.4 Color Rendering Index

5.4 Optical Ceramic Phosphors for High‐Power Solid‐State Lighting. 5.4.1 Introduction

5.4.2 Ceramic Phosphors for High‐Power White LEDs/LDs

5.4.2.1 Yellow‐Emitting Ceramic Phosphors. 5.4.2.1.1 YAG:Ce Ceramic Phosphors

5.4.2.1.2 TAG:Ce Ceramic Phosphor

5.4.2.1.3 GAGG:Ce Ceramic Phosphor

5.4.2.2 Red‐Emitting Ceramic Phosphors. 5.4.2.2.1 Red‐Emitting CaAlSiN3:Eu Ceramic Phosphor

5.4.2.2.2 Other Red‐Emitting Ceramic Phosphors

5.4.2.3 Green‐Emitting Ceramic Phosphors. 5.4.2.3.1 LuAG:Ce Green‐Emitting Ceramic Phosphor

5.4.2.3.2 Other Green‐Emitting Ceramic Phosphors

5.4.2.4 White‐Emitting Ceramic Phosphors

5.4.2.5 Composite Ceramic Phosphors with Novel Structure

5.4.3 Summary and Outlook

References

6 Passive Application/Window, Dome, and Armor

6.1 Background

6.2 Important Parameters. 6.2.1 Optical Properties

6.2.2 Mechanical Properties

6.2.3 Thermal Properties

6.3 Fabrication of Passive Ceramics

6.3.1 Spinel (MgO2Al4)

6.3.2 Aluminum Oxynitride (AlON)

6.3.3 Alumina (Al2O3)

6.3.4 Garnet (Y3Al5O12)

6.3.5 Yttria (Y2O3)

6.3.6 Zirconia (ZrO2)

6.3.7 Magnesia (MgO)

6.3.8 MgO‐Y2O3

6.3.9 Fluorides

6.4 Performance for Various Applications. 6.4.1 Performance Required for Armor Application

6.4.2 Performance Required for Infrared Windows

6.4.3 Performance Required for Optical System

6.5 Residual Problems and Future

References

7 Other Important Technologies

7.1 Surface Polishing (Finishing) and Coating. 7.1.1 Introduction on Surface Polishing

7.1.2 Laser Grade Polishing

7.1.3 Polishing Examples. 7.1.3.1 Measurement of Surface Figure Error/Transmitted Wavefront Error

7.1.3.2 Measurement of Surface Roughness

7.1.3.3 Measurement of Surface Imperfection

7.1.4 Introduction for Coating

7.1.5 Design of AR and HR Coating

7.1.6 Characteristic of Coated Film

7.1.7 Future Trends on Surface Polishing and Coating

7.2 Bonding Technology. 7.2.1 Problems of Existing Technology, Ceramic Composite Production, and Advantages

7.2.2 Microstructure and Thermal/Mechanical Properties of Bonding Interface

7.2.3 Optical Quality and Damage Characteristics of Bonded Ceramic Composites

7.3 Single Crystal Ceramics by SSCG (Solid‐State Crystal Growth) 7.3.1 Significance of Single Crystal Growth by Sintering Method

7.3.2 Single Crystal Growth Method by Sintering Method

7.3.3 Quality and Laser Characteristics of the Obtained Single Crystal

7.3.4 Synthesis of Noncubic Single Crystals by Sintering Method

7.4 Applications Using Ceramic Laser Technology

7.5 New Applications Using Transparent Ceramics. 7.5.1 Ceramic Jewels

7.5.2 Wireless Heating Element

7.5.3 Camera Lens

7.5.4 Screen for Mobile Phone

7.5.5 UV Transmission Lens for Lithography

7.6 Residual Problems and Future

References

Conclusion Remarks

Index. a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Akio Ikesue

.....

Figure 1.9 (a) Appearance of granulated Al2O3‐Y2O3 powders by spray drier and (b) internal structure of Al2O3‐Y2O3 powder compact after uniaxial press under 20 MPa.

The powder compact showed in the above figure is further pressed in CIP (cold isostatic press) machine at 140 MPa. Then, the pore size distribution of this sample after CIP was measured by using the mercury penetration method. The result is shown in Figure 1.10. The pore diameter of the sample using a binder with good crushing characteristics is concentrated at 30–40 nm, but large voids of μm size are detected in the other samples without a binder, resulting in structure defects (which induce light scattering sources at the end product). Once large structural defects are formed, it is difficult to completely remove them even by high‐pressure sintering techniques such as HP (hot press) and HIP (hot isostatic press) treatments.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Processing of Ceramics
Подняться наверх