Mechanical and Dynamic Properties of Biocomposites

Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Mechanical and Dynamic Properties of Biocomposites
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Mechanical and Dynamic Properties of Biocomposites
1 Mechanical Behaviors of Natural Fiber‐Reinforced Polymer Hybrid Composites
1.1 Introduction
1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites. 1.2.1 Natural Fiber‐Reinforced Polymer Composites or Biocomposites
1.2.2 Polymer Matrices
1.3 Hybrid Natural Fiber‐Reinforced Polymeric Biocomposites
1.4 Mechanical Behaviors of Natural Fiber‐Reinforced Polymer‐Based Hybrid Composites
1.4.1 Hybrid Natural FRP Composites
1.4.1.1 Bagasse/Jute FRP Hybrid Composites
1.4.1.2 Bamboo/MFC FRP Hybrid Composites
1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites
1.4.1.4 Coconut/Cork FRP Hybrid Composites
1.4.1.5 Coir/Silk FRP Hybrid Composites
1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites
1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites
1.4.1.8 Jute/OPEFB FRP Hybrid Composites
1.4.1.9 Kenaf/PALF FRP Hybrid Composites
1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites
1.5 Other Related Properties that Are Dependent on Mechanical Properties
1.5.1 Tribological Behavior
1.5.2 Thermal Behavior
1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites
1.7 Conclusions
References
2 Mechanical Behavior of Additive Manufactured Porous Biocomposites
2.1 Introduction
2.2 Human Bone
2.3 Porous Scaffold
2.4 Biomaterials for Scaffolds
2.4.1 Required Properties of Biomaterials
2.4.2 Types of Biomaterials. 2.4.2.1 Metals
2.4.2.2 Polymers
2.4.2.3 Ceramics
2.4.2.4 Composites
2.5 Additive Manufacturing of Porous Structures
2.5.1 Generic Process of AM
2.5.2 Powder Bed Fusion Process
2.5.3 Fused Deposition Modeling Process
2.5.4 Additive Manufacturing of Porous Biocomposites
2.6 Design of Porous Scaffold
2.6.1 Pore Size
2.6.2 Pore Geometry
2.6.3 Bioceramics as Reinforcement Material
2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites
2.8 Conclusion
References
3 Mechanical and Dynamic Mechanical Analysis of Bio‐based Composites
3.1 Introduction
3.2 Mechanical Properties of Macro‐scale Fiber
3.3 Mechanical Properties of Nano‐scale Fiber. 3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites
3.3.1.1 Fabrication Method
3.3.1.2 Nanocellulose Loading
3.3.1.3 Nanocellulose Dispersion and Distribution
3.3.1.4 Nanocellulose Orientation
3.3.2 The Static Mechanical Properties of Bionanocomposites
3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites
3.4.1 Single Fiber
3.4.1.1 Sugar Palm
3.4.1.2 Bamboo
3.4.1.3 Kenaf
3.4.1.4 Alfa
3.4.1.5 Carnauba
3.4.1.6 Pineapple Leaf Fiber (PALF)
3.4.1.7 Oil Palm Fiber (OPF)
3.4.1.8 Red Algae
3.4.1.9 Banana
3.4.1.10 Flax
3.4.1.11 Jute
3.4.1.12 Hemp
3.4.1.13 Waste Silk Fiber
3.4.1.14 Henequen
3.4.2 Hybrid Fiber
3.4.2.1 Sisal/Oil Palm
3.4.2.2 Coir/PALF
3.4.2.3 Kenaf/PALF
3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute
3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose
3.5 Dynamic Mechanical Properties of Bionanocomposites
3.5.1 The Dynamic Mechanical Properties of Bionanocomposites
3.6 Conclusion
References
4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers
4.1 Introduction
4.2 Major Factors Influencing Quality of Biocomposites
4.2.1 Selection of Natural Fibers
4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites
4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites
4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification
4.2.5 Type of Polymer Matrix
4.2.6 Processing Conditions in the Manufacture of Biocomposite
4.2.7 Presence of Voids and Porosity
4.2.8 Nanocellulose‐Reinforced Biocomposites
4.2.8.1 Preparation and Properties of Cellulose Nanofibers
4.2.8.2 Industrial Applications of Cellulose Nanofibers
4.3 Conclusions
References
5 Machinability Analysis on Biowaste Bagasse‐Fiber‐Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method
5.1 Introduction
5.2 Experimental Methodology. 5.2.1 Materials
5.2.2 Specimen Preparation
5.2.3 Machining of the Composite Specimen
5.2.4 Selection of Orthogonal Array
5.2.5 Development of Multivariable Nonlinear Regression Model
5.3 Results and Discussion. 5.3.1 Influence of Machining Parameters on Thrust Force and Torque
5.3.2 S/N Ratio
5.3.3 ANOVA
5.3.4 Correlation of Machining Parameters with Responses
5.3.5 Confirmation Test
5.4 Conclusions
References
6 Mechanical and Dynamic Properties of Kenaf‐Fiber‐Reinforced Composites
6.1 Introduction
6.2 Mechanical Properties of Kenaf‐Fiber‐Reinforced Polymer Composite
6.3 Dynamic Mechanical Analysis
6.4 Storage Modulus (E′) of Kenaf Fiber–Polymer Composite
6.5 Loss Modulus (E″) of Kenaf Fiber–Polymer Composite
6.6 Damping Factor (Tan δ)
6.7 Glass Transition Temperatures (Tg)
6.8 Conclusion
References
7 Investigation on Mechanical Properties of Surface‐Treated Natural Fibers‐Reinforced Polymer Composites
7.1 Introduction
7.2 Mechanical Properties of Natural Fibers
7.3 Drawbacks of Natural Fibers
7.4 Surface Modification of Natural Fibers. 7.4.1 Chemical Treatment
7.4.2 Alkaline Treatment
7.4.3 Silane Treatment
7.4.4 Acetylation Treatment
7.4.5 Benzylation Treatment
7.4.6 Peroxide Treatment
7.5 Maleated Coupling Agents
7.5.1 Isocyanate
7.5.2 Permanganate Treatment
7.5.3 Stearic Acid Treatment
7.5.4 Physical Treatment
7.5.5 Plasma Treatment
7.5.6 Corona Treatment
7.5.7 Ozone Treatment
7.6 Summary
References
8 Mechanical and Tribological Characteristics of Industrial Waste and Agro Waste Based Hybrid Composites
8.1 Introduction
8.2 Materials and Methods
8.2.1 Scanning Electron Microscopy (SEM)
8.3 Result and Discussion. 8.3.1 Effect of Chemical Treatment on Fiber
8.3.2 Mechanical Behavior
8.3.3 Erosion Behavior
8.3.3.1 Effect of Fiber Treatment on Erosion Rate
8.3.3.2 Effect of Red Mud Addition on Erosion Rate
8.3.3.3 Effect of Impact Angle on Erosion Rate
8.4 Conclusion
References
9 Dynamic Properties of Kenaf‐Fiber‐Reinforced Composites
9.1 Introduction
9.2 Manufacturing Techniques for Kenaf‐Fiber‐Reinforced Composites
9.3 Characterization
9.3.1 Dynamic Mechanical Analysis (DMA)
9.3.2 Thermogravimetric Analysis (TGA)
9.3.3 Vibration‐Damping Testing
9.3.4 Acoustic Properties:
9.4 Overview of the Dynamics Properties of Kenaf‐Fiber‐Reinforced Composite
9.4.1 Dynamic Mechanical Properties (DMA)
9.4.2 TGA Analysis of Composites:
9.4.3 Acoustic Properties
9.5 Conclusion
References
10 Effect of Micro‐Dry‐Leaves Filler and Al‐SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites
10.1 Introduction
10.2 Materials and Methods. 10.2.1 Materials
10.2.2 Production of Al‐SiC Nanoparticles
10.2.3 Fabrication of Epoxy Composites
10.2.4 Epoxy Composite Characterization. 10.2.4.1 Porosity, Density, and Volume Fraction
10.2.4.2 Tensile Properties
10.2.4.3 Flexural Properties
10.2.4.4 Impact Strength
10.2.4.5 Dynamic Mechanical Analysis (DMA)
10.2.4.6 Morphological Properties
10.3 Results and Discussion. 10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites
10.3.2 Tensile Characteristics
10.3.3 Flexural Characteristics
10.3.4 Impact Characteristics
10.3.5 Dynamic Mechanical Analysis
10.3.5.1 Storage Modulus
10.3.5.2 Loss Modulus
10.3.5.3 Damping Factor
10.3.6 Morphological Characteristics
10.4 Conclusion
References
11 Effect of Fillers on Natural Fiber–Polymer Composite: An Overview of Physical and Mechanical Properties
11.1 Introduction
11.2 Influence of Cellulose Micro‐filler on the Flax, Pineapple Fiber‐Reinforced Epoxy Matrix Composites
11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites
11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites
11.5 Influence of Fly Ash on Wood Fiber Geopolymer Composites
11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites
11.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber–Epoxy Composite
11.8 Influence of Nano‐SiO2 Filler on the Phaseolus vulgaris Fiber–Polyester Composite
11.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber–Epoxy Composite
11.10 Influence of Palm and Coconut Shell Filler on the Hemp–Kevlar Fiber–Epoxy Composite
11.11 Influence of Coir Powder Filler on Polyester Composite
11.12 Influence of CaCO3 (Calcium Carbonate) Filler on the Luffa Fiber–Epoxy Composite
11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite
11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber–Natural Rubber Composite
11.15 Influence of Groundnut Shell, Rice Husk, and Wood Powder Fillers on the Luffa cylindrica Fiber–Polyester Composite
11.16 Influence of Rice Husk Fillers on the Bauhinia vahlii – Sisal Fiber–Epoxy Composite
11.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite
11.18 Influence of Tamarind Seed Fillers on the Flax Fiber–Liquid Thermoplastic Composite
11.19 Influence of Walnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites
11.20 Influence of Waste Vegetable Peel Fillers on the Epoxy Composite
11.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite
11.22 Influence of Wood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite
11.23 Influence of Wood Dust Fillers (Rosewood and Padauk) on the Jute Fiber–Epoxy Composite
11.24 Summary
11.25 Conclusions
References
12 Temperature‐Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrica Reinforced Biochar‐Tailored Vinyl Ester Composite
12.1 Introduction
12.2 Materials and Method. 12.2.1 Materials
12.2.2 Biochar Characterization. 12.2.2.1 Particle Size Analyzer
12.2.2.2 X‐ray Diffraction
12.2.2.3 FTIR Spectroscopy
12.2.3 Composite Fabrication
12.2.4 Dynamic Mechanical Analysis (DMA)
12.2.5 Tensile Testing
12.2.6 Flexural Testing
12.2.7 Impact Testing
12.2.8 Scanning Electron Microscopy
12.3 Results and Discussion. 12.3.1 Biochar Characterization. 12.3.1.1 Particle Analyzer
12.3.1.2 Fourier Transform (InfraRed) Spectroscopy
12.3.1.3 X‐ray Diffraction
12.3.2 Dynamic Mechanical Analysis
12.3.3 Tensile Tests
12.3.4 Flexural Tests
12.3.5 Impact Tests
12.4 Conclusions
References
13 Development and Sustainability of Biochar Derived from Cashew Nutshell‐Reinforced Polymer Matrix Composite
13.1 Introduction
13.2 Materials and Methods
13.2.1 Biochar Preparation
13.2.2 Composite Preparation
13.2.3 Mechanical Testing
13.3 Results and Discussion. 13.3.1 Tensile Strength
13.3.2 Flexural Strength
13.3.3 Impact Strength
13.3.4 Hardness
13.3.5 Failure Analysis of Cashew Nutshell Waste Extracted Biochar‐Reinforced Polymer Composites. 13.3.5.1 Tensile Strength Failure Analysis
13.3.5.2 Flexural Strength Failure Analysis
13.3.5.3 Impact Strength Failure Analysis
13.4 Conclusion
References
14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber‐Reinforced Epoxy Composites
14.1 Introduction
14.1.1 Sisal Fibers
14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite
14.2 Materials and Methods. 14.2.1 Materials
14.2.2 Fabrication Method
14.2.3 Characterization
14.2.3.1 Tensile Test
14.2.3.2 Flexural Test
14.2.3.3 Moisture Diffusion
14.3 Results and Discussion
14.3.1 Tensile Properties
14.3.2 Flexural Properties
14.3.3 Water Absorption
14.4 Conclusion
References
15 Mechanical and Dynamic Properties of Ramie Fiber‐Reinforced Composites
15.1 Introduction
15.2 Mechanical Strength of Ramie Fiber Composites
15.3 Dynamic Properties of Ramie Fiber Composites
15.3.1 Temperature Influence
15.3.2 Storage Modulus
15.3.3 Viscous Modulus
15.3.4 Damping Factor
15.4 Conclusion
References
16 Fracture Toughness of the Natural Fiber‐Reinforced Composites: A Review
16.1 Introduction
16.1.1 Fracture Toughness Tests
16.1.2 Mode‐I Loading. 16.1.2.1 Double Cantilever Beam Method (DCB)
16.1.2.2 Compact Tensile Method (CT)
16.1.2.3 Single‐Edge Notch Bend Test (SENB)
16.1.3 Mode‐II Loading. 16.1.3.1 End‐Notched Flexure Test (ENF)
16.1.4 Mode‐III Loading. 16.1.4.1 Split Cantilever Beam Method (SCB)
16.1.4.2 Edge Crack Torsion Test (ECT)
16.1.4.3 Mixed Mode Bend Test (MMB)
16.2 Factors Affecting the Fracture Energy of the Biocomposites. 16.2.1 Fiber Parameters
16.2.2 Hybridization
16.2.3 Fiber Treatment
16.2.4 Aging
16.3 Conclusion
Acknowledgments
References
17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites
17.1 Introduction
17.2 Materials and Methods. 17.2.1 Materials
17.2.2 Fabrication of Composites
17.2.3 Dynamic Mechanical Analysis
17.3 Result and Discussion. 17.3.1 Damping Factor (Tan δ) Response of Basalt/Flax Fiber Composite
17.3.2 Storage Modulus (E′) Response of Basalt/Flax Fiber Composite
17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites
17.4 Conclusions
Acknowledgments
References
Index. a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
v
w
y
z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Edited by
Senthilkumar Krishnasamy
.....
Rajini Nagarajan
Senthil Muthu Kumar Thiagamani
.....